## Projects of SPP 2026

On this site you find the list of projects supported by the DFG priority programme „Geometry at Infinity“ during the second funding period 2020-2023. The pages of the individual projects provide information on their research goals, publications, members, and activities.

### 35Geometric operators on singular domains

We study mixed boundary value problem on singular domains via a geometric approach.

Project leader:
Prof. Dr. Bernd Ammann,
JProf. Dr. Nadine Große

### 37Boundary value problems and index theory on Riemannian and Lorentzian manifolds

Project leader:
Prof. Dr. Christian Bär

### 39Geometric invariants of discrete and locally compact groups

Project leader:
Prof. Dr. Kai-Uwe Bux,
Dr. Stefan Witzel

### 40Construction of Riemannian manifolds with scalar curvature constraints and applications to general relativity

Project leader:
Dr. Armando J. Cabrera Pacheco

### 41Geometrically defined asymptotic coordinates in general relativity

Project leader:
Prof. Dr. Carla Cederbaum,
Prof. Dr. Jan Metzger

### 42Spin obstructions to metrics of positive scalar curvature on nonspin manifolds

Project leader:
Dr. Simone Cecchini

### 46Ricci flows for non-smooth spaces, monotonic quantities, and rigidity

Project leader:
Prof. Dr. Matthias Erbar,
Karl-Theodor Sturm

### 47Self-adjointness of Laplace and Dirac operators on Lorentzian manifolds foliated by noncompact hypersurfaces

Project leader:
Felix Finster

### 48Profinite and RFRS groups

The project studies profinite aspects of residually finite rationally solvable groups.

Project leader:
Dr. Giles Gardam

### 50Probabilistic and spectral properties of weighted Riemannian manifolds with Kato bounded Bakry-Emery-Ricci curvature

Project leader:
Batu Güneysu,
Max-Konstantin von Renesse

### 51The geometry of locally symmetric manifolds via natural maps

Project leader:
Prof. Dr. Ursula Hamenstädt

### 54Cohomology of symmetric spaces as seen from infinity

Project leader:
Prof. Dr. Tobias Hartnick,
PD Dr. Andreas Ott

### 56Large genus limit of energy minimizing compact minimal surfaces in the 3-sphere

Project leader:
Dr. Lynn Heller

### 57Existence, regularity and uniqueness results of geometric variational problems II

Project leader:
Dr. Jonas Hirsch

### 62A unified approach to Euclidean buildings and symmetric spaces of noncompact type

Project leader:
Prof. Dr. Linus Kramer,
Prof. Dr. Petra Schwer

### 63Uniqueness in mean curvature flow

Project leader:
JProf. Dr. Klaus Kröncke,
Prof. Dr. Oliver Schnürer

### 64Spectral geometry, index theory and geometric flows on singular spaces II

Project leader:
JProf. Dr. Klaus Kröncke,
Prof. Dr. Boris Vertman

### 66Minimal surfaces in metric spaces II

The project is devoted to the investigation of minimal surfaces in metric spaces.

Project leader:
Prof. Dr. Alexander Lytchak,
Dr. Stephan Stadler

### 71Rigidity, deformations and limits of maximal representations II

Project leader:
JProf. Dr. Maria Beatrice Pozzetti,
Prof. Dr. Anna Wienhard

### 74Rigidity, stability and deformations in nearly parallel G2-geometry

Project leader:
Prof. Dr. Uwe Semmelmann

### 75Solutions to Ricci flow whose scalar curvature is bounded in L^p II

Project leader:
Prof. Dr. Miles Simon

### 77Asymptotic geometry of the Higgs bundle moduli space II

Project leader:
PD Dr. Jan Swoboda,
Prof. Dr. Hartmut Weiss

### 78Duality and the coarse assembly map II

The project studies questions related to the coarse Baum-Connes conjecture.

Project leader:
Dr. Christopher Wulff,
Dr. Rudolf Zeidler