Projects of SPP 2026
On this site you find the list of projects supported by the DFG priority programme „Geometry at Infinity“ during the second funding period 2020-2025. The pages of the individual projects provide information on their research goals, publications, members, and activities.
35Geometric operators on singular domains
We study mixed boundary value problem on singular domains via a geometric approach.
Project leader:
Prof. Dr. Bernd Ammann,
Prof. Dr. Nadine Große
37Boundary value problems and index theory on Riemannian and Lorentzian manifolds
Project leader:
Prof. Dr. Christian Bär
38Geometry of surface homeomorphism groups
Project leader:
Ph Dr. Jonathan Bowden,
Prof. Dr. Sebastian Hensel
39Geometric invariants of discrete and locally compact groups
Project leader:
Prof. Dr. Kai-Uwe Bux,
Prof. Dr. Stefan Witzel
40Construction of Riemannian manifolds with scalar curvature constraints and applications to general relativity
Project leader:
Dr. Armando J. Cabrera Pacheco
41Geometrically defined asymptotic coordinates in general relativity
Project leader:
Prof. Dr. Carla Cederbaum,
Prof. Dr. Jan Metzger
42Spin obstructions to metrics of positive scalar curvature on nonspin manifolds
Project leader:
Prof. Dr. Simone Cecchini
46Ricci flows for non-smooth spaces, monotonic quantities, and rigidity
Project leader:
Prof. Dr. Matthias Erbar,
Prof. Dr. Karl-Theodor Sturm
47Self-adjointness of Laplace and Dirac operators on Lorentzian manifolds foliated by noncompact hypersurfaces
Project leader:
Prof. Dr. Felix Finster
48Profinite and RFRS groups
The project studies profinite aspects of residually finite rationally solvable groups.
Project leader:
Prof. Dr. Giles Gardam
50Probabilistic and spectral properties of weighted Riemannian manifolds with Kato bounded Bakry-Emery-Ricci curvature
Project leader:
Prof. Dr. Batu Güneysu,
Prof. Dr. Max-Konstantin von Renesse
51The geometry of locally symmetric manifolds via natural maps
Project leader:
Prof. Dr. Ursula Hamenstädt
54Cohomology of symmetric spaces as seen from infinity
Project leader:
Prof. Dr. Tobias Hartnick,
PD Dr. Andreas Ott
55New hyperkähler spaces from the the self-duality equations
Project leader:
Prof. Dr. Sebastian Heller
56Large genus limit of energy minimizing compact minimal surfaces in the 3-sphere
Project leader:
Prof. Dr. Lynn Heller
57Existence, regularity and uniqueness results of geometric variational problems II
Project leader:
Prof. Dr. Jonas Hirsch
58Profinite perspectives on l2-cohomology
Project leader:
Jun.-Prof. Dr. Holger Kammeyer,
Jun.-Prof. Dr. Steffen Kionke,
Prof. Dr. Roman Sauer,
Prof. Dr. Thomas Schick
62A unified approach to Euclidean buildings and symmetric spaces of noncompact type
Project leader:
Prof. Dr. Linus Kramer,
Prof. Dr. Petra Schwer
63Uniqueness in mean curvature flow
Project leader:
JProf. Dr. Klaus Kröncke,
Prof. Dr. Oliver Schnürer
64Spectral geometry, index theory and geometric flows on singular spaces II
Project leader:
JProf. Dr. Klaus Kröncke,
Prof. Dr. Boris Vertman
66Minimal surfaces in metric spaces II
The project is devoted to the investigation of minimal surfaces in metric spaces.
Project leader:
Prof. Dr. Alexander Lytchak,
Dr. Stephan Stadler
71Rigidity, deformations and limits of maximal representations II
Project leader:
Prof. Dr. Maria Beatrice Pozzetti,
Prof. Dr. Anna Wienhard
74Rigidity, stability and deformations in nearly parallel G2-geometry
Project leader:
Prof. Dr. Uwe Semmelmann
75Solutions to Ricci flow whose scalar curvature is bounded in L^p II
Project leader:
Prof. Dr. Miles Simon
78Duality and the coarse assembly map II
The project studies questions related to the coarse Baum-Connes conjecture.
Project leader:
PD Dr. Christopher Wulff,
Prof. Dr. Rudolf Zeidler