## Prof. Dr. Wilderich Tuschmann

### Project leader

Karlsruher Institut für Technologie

E-mail: wilderich.tuschmann(at)kit.edu

Telephone: +49 721 608 43942

Homepage: http://www.math.kit.edu/iag5/~tuschmann/

## Project

**15**Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds
**52**Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds II

## Publications within SPP2026

These are the refereed proceedings of the 2019 'Australian-German Workshop on Differential Geometry in the Large' which represented a cross section of topics across differential geometry, geometric analysis and differential topology. The two-week programme featured talks treating geometric evolution equations, structures on manifolds, non-negative curvature and topics in Kähler, Alexandrov and Sasaki geometry as well as differential topology.

Journal | London Mathematical Society Lecture Notes Series |

Publisher | Cambridge University Press |

Book | Differential Geometry in the Large |

Volume | 463 |

Pages | 398 |

Link to preprint version | |

Link to published version |

**Related project(s):****52**Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds II

We obtain a Central Limit Theorem for closed Riemannian manifolds, clarifying along the way the geometric meaning of some of the hypotheses in Bhattacharya and Lin's Omnibus Central Limit Theorem for Fréchet means. We obtain our CLT assuming certain stability hypothesis for the cut locus, which always holds when the manifold is compact but may not be satisfied in the non-compact case.

**Related project(s):****11**Topological and equivariant rigidity in the presence of lower curvature bounds**15**Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds

We show that in each dimension 4n+3, n>1, there exist infinite sequences of closed smooth simply connected manifolds M of pairwise distinct homotopy type for which the moduli space of Riemannian metrics with nonnegative sectional curvature has infinitely many path components. Closed manifolds with these properties were known before only in dimension 7, and our result also holds for moduli spaces of Riemannian metrics with positive Ricci curvature. Moreover, inconjunction with work of Belegradek, Kwasik and Schultz, we obtain that for each such M the moduli space of complete nonnegative sectional curvature metrics on the open simply connected manifold M × R also has infinitely many path components.

Journal | Bulletin of the London Math. Society |

Volume | 50 |

Pages | 96-107 |

Link to preprint version | |

Link to published version |

**Related project(s):****15**Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds

We study spaces and moduli spaces of Riemannian metrics with non-negative Ricci or non-negative sectional curvature on closed and open manifolds and construct, in particular, the first classes of manifolds for which these spaces have non-trivial rational homotopy, homology and cohomology groups. We also show that in every dimension at least seven (respectively, at least eight) there exist closed (respectively, open) manifolds for which the moduli space of Riemannian metrics with non-negative sectional curvature has infinitely many path components. An analogous statement holds for spaces of non-negative Ricci curvature metrics in every dimension at least eleven (respectively, twelve).

**Related project(s):****15**Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds