## Prof. Dr. Rudolf Zeidler

### Project leader

Westfälischen Wilhelms-Universität Münster

E-mail: rudolf.zeidler(at)uni-muenster.de

Homepage: https://www.rzeidler.eu/

## Project

**78**Duality and the coarse assembly map II

## Publications within SPP2026

We prove a positive mass theorem for spin initial data sets \((M,g,k)\) that contain an asymptotically flat end and a shield of dominant energy (a subset of M on which the dominant energy scalar \(μ−|J|\) has a positive lower bound). In a similar vein, we show that for an asymptotically flat end \(\mathcal{E}\) that violates the positive mass theorem (i.e. \(\mathrm{E}<|\mathrm{P}|\)), there exists a constant \(R > 0\), depending only on \(\mathcal{E}\), such that any initial data set containing \(\mathcal{E}\) must violate the hypotheses of Witten's proof of the positive mass theorem in an \(R\)-neighborhood of \(\mathcal{E}\). This implies the positive mass theorem for spin initial data sets with arbitrary ends, and we also prove a rigidity statement. Our proofs are based on a modification of Witten's approach to the positive mass theorem involving an additional independent timelike direction in the spinor bundle.

**Related project(s):****42**Spin obstructions to metrics of positive scalar curvature on nonspin manifolds**78**Duality and the coarse assembly map II

Let \(M\) be an orientable connected \(n\)-dimensional manifold with \(n\in\{6,7\}\) and let \(Y\subset M\) be a two-sided closed connected incompressible hypersurface which does not admit a metric of positive scalar curvature (abbreviated by psc). Moreover, suppose that the universal covers of \(M\) and \(Y\) are either both spin or both non-spin. Using Gromov's \(\mu\)-bubbles, we show that \(M\) does not admit a complete metric of psc. We provide an example showing that the spin/non-spin hypothesis cannot be dropped from the statement of this result. This answers, up to dimension \(7\), a question by Gromov for a large class of cases. Furthermore, we prove a related result for submanifolds of codimension two. We deduce as special cases that, if \(Y\) does not admit a metric of psc and \(\dim(Y) \neq 4\), then \(M := Y\times\mathbb{R}\) does not carry a complete metric of psc and \(N := Y \times \mathbb{R}^2\) does not carry a complete metric of uniformly psc provided that \(\dim(M) \leq 7\) and \(\dim(N) \leq 7\), respectively. This solves, up to dimension \(7\), a conjecture due to Rosenberg and Stolz in the case of orientable manifolds.

Journal | Journal of Topology |

Volume | 16.3 |

Pages | 855-876 |

Link to preprint version | |

Link to published version |

**Related project(s):****42**Spin obstructions to metrics of positive scalar curvature on nonspin manifolds**78**Duality and the coarse assembly map II

In this survey, we give an overview of recent applications of Callias operators to the geometry of scalar curvature. A Callias operator is an operator of the form \(\mathcal{B}_\psi = \mathcal{D} + \mathcal{G}_\psi\), where *\(\mathcal{D}\)* is a Dirac operator and \(\mathcal{G}_\psi\) is an order zero term depending on a scalar-valued function \(\psi\). The zero order term modifies the Schrödinger–Lichnerowicz formula by a differential expression in the function \(\psi\) that can be related to distance estimates. This fact allows to use the Dirac method to derive sharp quantitative estimates in the presence of lower scalar curvature bounds in the spirit of metric inequalities with scalar curvature as proposed by Gromov.

Book | M Gromov, B. Lawson (eds): Perspectives in Scalar Curvature |

Volume | 1 |

Pages | 515-542 |

Link to preprint version | |

Link to published version |

**Related project(s):****42**Spin obstructions to metrics of positive scalar curvature on nonspin manifolds**78**Duality and the coarse assembly map II

We construct a slant product on the analytic structure group of Higson and Roe and the K-theory of the stable Higson corona of Emerson and Meyer, which is the domain of the co-assembly map. In fact, we obtain such products simultaneously on the entire Higson-Roe sequence. The existence of these products implies injectivity results for external product maps on each term of the Higson-Roe sequence. Our results apply in particular to taking products with aspherical manifolds whose fundamental groups admit coarse embeddings into Hilbert space. To conceptualize the general class of manifolds where this method applies, we introduce the notion of Higson-essentialness. A complete spin-c manifold is Higson-essential if its fundamental class is detected by the stable Higson corona via the co-assembly map. We prove that coarsely hypereuclidean manifolds are Higson-essential. Finally, we draw conclusions for positive scalar curvature metrics on product spaces, in particular on non-compact manifolds. We also construct suitable equivariant versions of these slant products and discuss related problems of exactness and amenability of the stable Higson corona.

Journal | Annales de l'Institut Fourier |

Volume | 71 (2021) no. 3 |

Pages | 913-1021 |

Link to preprint version | |

Link to published version |

**Related project(s):****10**Duality and the coarse assembly map

Let \(\mathcal{E}\) be an asymptotically Euclidean end in an otherwise arbitrary complete and connected Riemannian spin manifold \((M,g)\). We show that if \(\mathcal{E}\) has negative ADM-mass, then there exists a constant \(R > 0\), depending only on \(\mathcal{E}\), such that \(M\) must become incomplete or have a point of negative scalar curvature in the \(R\)-neighborhood around \(\mathcal{E}\) in \(M\). This gives a quantitative answer to Schoen and Yau's question on the positive mass theorem with arbitrary ends for spin manifolds. Similar results have recently been obtained by Lesourd, Unger and Yau without the spin condition in dimensions \(\leq 7\) assuming Schwarzschild asymptotics on the end \(\mathcal{E}\). We also derive explicit quantitative distance estimates in case the scalar curvature is uniformly positive in some region of the chosen end \(\mathcal{E}\). Here we obtain refined constants reminiscent of Gromov's metric inequalities with scalar curvature.

**Related project(s):****42**Spin obstructions to metrics of positive scalar curvature on nonspin manifolds**78**Duality and the coarse assembly map II

We use the Dirac operator technique to establish sharp distance estimates for compact spin manifolds under lower bounds on the scalar curvature in the interior and on the mean curvature of the boundary. In the situations we consider, we thereby give refined answers to questions on metric inequalities recently proposed by Gromov. This includes optimal estimates for Riemannian bands and for the long neck problem. In the case of bands over manifolds of non-vanishing \(\widehat{\mathrm{A}}\)-genus, we establish a rigidity result stating that any band attaining the predicted upper bound is isometric to a particular warped product over some spin manifold admitting a parallel spinor. Furthermore, we establish scalar- and mean curvature extremality results for certain log-concave warped products. The latter includes annuli in all simply-connected space forms. On a technical level, our proofs are based on new spectral estimates for the Dirac operator augmented by a Lipschitz potential together with local boundary conditions.

**Related project(s):****42**Spin obstructions to metrics of positive scalar curvature on nonspin manifolds**78**Duality and the coarse assembly map II