Prof. Dr. Carla Cederbaum
Project leader, Researcher
Professor
Universität Tübingen
E-mail: cederbaum(at)math.uni-tuebingen.de
Telephone: 07071/2974318
Homepage: http://math.uni-tuebingen.de/~cederbaum
Project
41Geometrically defined asymptotic coordinates in general relativity
5Index theory on Lorentzian manifolds
Publications
In this paper, we combine and generalize to higher dimensions the approaches to proving the uniqueness of connected (3+1)-dimensional static vacuum asymptotically flat black hole spacetimes by Müller zum Hagen--Robinson--Seifert and by Robinson. Applying these techniques, we prove and/or reprove geometric inequalities for connected (n+1)-dimensional static vacuum asymptotically flat spacetimes with either black hole or equipotential photon surface or specifically photon sphere inner boundary. In particular, assuming a natural upper bound on the total scalar curvature of the boundary, we recover and extend the well-known uniqueness results for such black hole and equipotential photon surface spacetimes. We also relate our results and proofs to existing results, in particular to those by Agostiniani--Mazzieri and by Nozawa--Shiromizu--Izumi--Yamada.
Related project(s):
41Geometrically defined asymptotic coordinates in general relativity
It is a well-known fact that the Schwarzschild spacetime admits a maximal spacetime extension in null coordinates which extends the exterior Schwarzschild region past the Killing horizon, called the Kruskal-Szekeres extension. This method of extending the Schwarzschild spacetime was later generalized by Brill-Hayward to a class of spacetimes of "profile h" across non-degenerate Killing horizons. Circumventing analytical subtleties in their approach, we reconfirm this fact by reformulating the problem as an ODE, and showing that the ODE admits a solution if and only if the naturally arising Killing horizon is non-degenerate. Notably, this approach lends itself to discussing regularity across the horizon for non-smooth metrics.
We will discuss applications to the study of photon surfaces, extending results by Cederbaum-Galloway and Cederbaum-Jahns-Vičánek-Martínez beyond the Killing horizon. In particular, our analysis asserts that photon surfaces approaching the Killing horizon must necessarily cross it.
Journal | Letters in Mathematical Physics |
Publisher | Springer |
Link to preprint version | |
Link to published version |
Related project(s):
41Geometrically defined asymptotic coordinates in general relativity
We present a new proof of the Willmore inequality for an arbitrary bounded domain Ω⊂ℝ^n with smooth boundary. Our proof is based on a parametric geometric inequality involving the electrostatic potential for the domain Ω; this geometric inequality is derived from a geometric differential inequality in divergence form. Our parametric geometric inequality also allows us to give new proofs of the quantitative Willmore-type and the weighted Minkowski inequalities by Agostiniani and Mazzieri.
Related project(s):
41Geometrically defined asymptotic coordinates in general relativity
We present different proofs of the uniqueness of 4-dimensional static vacuum asymptotically flat spacetimes containing a connected equipotential photon surface or in particular a connected photon sphere. We do not assume that the equipotential photon surface is outward directed or non-degenerate and hence cover not only the positive but also the negative and the zero mass case which has not yet been treated in the literature. Our results partially reproduce and extend beyond results by Cederbaum and by Cederbaum and Galloway. In the positive and negative mass cases, we give three proofs which are based on the approaches to proving black hole uniqueness by Israel, Robinson, and Agostiniani--Mazzieri, respectively. In the zero mass case, we give four proofs. One is based on the positive mass theorem, the second one is inspired by Israel's approach and in particular leads to a new proof of the Willmore inequality in (ℝ^3,δ), under a technical assumption. The remaining two proofs are inspired by proofs of the Willmore inequality by Cederbaum and Miehe and by Agostiniani and Mazzieri, respectively. In particular, this suggests to view the Willmore inequality and its rigidity case as a zero mass version of equipotential photon surface uniqueness.
Related project(s):
41Geometrically defined asymptotic coordinates in general relativity
We study four-dimensional asymptotically flat electrostatic electro-vacuum spacetimes with a connected black hole, photon sphere, or equipotential photon surface inner boundary. Our analysis, inspired by the potential theory approach by Agostiniani–Mazzieri, allows to give self-contained proofs of known uniqueness theorems of the sub-extremal, extremal, and super-extremal Reissner–Nordström spacetimes. We also obtain new results for connected photon spheres and equipotential photon surfaces in the extremal case. Finally, we provide, up to a restrictionon the range of their radii, the uniqueness result for connected (both non-degenerate and degenerate) equipotential photon surfaces in the super-extremal case, not yet treated in the literature.
Journal | Annales Henri Poincaré |
Publisher | Springer |
Link to preprint version | |
Link to published version |
Related project(s):
41Geometrically defined asymptotic coordinates in general relativity
We conduct a review of the basic definitions and the principal results in the study of wavelike spacetimes, that is spacetimes whose metric models massless radiation moving at the speed of light, focusing in particular on those geometries with parallel rays. In particular, we motivate and connect their various definitions, outline their coordinate descriptions and present some classical results in their study in a language more accessible to modern readers, including the existence of "null coordinates" and the construction of Penrose limits. We also present a thorough summary of recent work on causality in pp-waves, and describe progress in addressing an open question in the field - the Ehlers-Kundt conjecture.
Journal | General Relativity and Gravitation |
Publisher | Springer |
Volume | 55 |
Link to preprint version | |
Link to published version |
Related project(s):
41Geometrically defined asymptotic coordinates in general relativity
We study timelike, totally umbilic hypersurfaces -- called photon surfaces -- in n+1-dimensional static, asymptotically flat spacetimes, for n+1≥4. First, we give a complete characterization of photon surfaces in a class of spherically symmetric spacetimes containing the (exterior) subextremal Reissner--Nordström spacetimes, and hence in particular the (exterior) positive mass Schwarzschild spacetimes. Next, we give new insights into the spacetime geometry near equipotential photon surfaces and provide a new characterization of photon spheres (not appealing to any field equations).
We furthermore show that any asymptotically flat electrostatic electro-vacuum spacetime with inner boundary consisting of equipotential, (quasi-locally) subextremal photon surfaces and/or non-degenerate black hole horizons must be isometric to a suitable piece of the necessarily subextremal Reissner--Norström spacetime of the same mass and charge. Our uniqueness result applies work by Jahns and extends and complements several existing uniqueness theorems. Its proof fundamentally relies on the lower regularity rigidity case of the Riemannian Positive Mass Theorem.
Related project(s):
41Geometrically defined asymptotic coordinates in general relativity
The coordinate freedom of General Relativity makes it challenging to find mathematically rigorous and physically sound definitions for physical quantities such as the center of mass of an isolated gravitating system. We will argue that a similar phenomenon occurs in Newtonian Gravity once one ahistorically drops the restriction that one should only work in Cartesian coordinates when studying Newtonian Gravity. This will also shed light on the nature of the challenge of defining the center of mass in General Relativity. Relatedly, we will give explicit examples of asymptotically Euclidean relativistic initial data sets which do not satisfy the Regge--Teitelboim parity conditions often used to achieve a satisfactory definition of center of mass. These originate in our joint work with Jan Metzger. This will require appealing to Bartnik's asymptotic harmonic coordinates.
Publisher | Springer |
Book | Gravity, Cosmology, and Astrophysics A Journey of Exploration and Discovery with Female Pioneers |
Link to preprint version | |
Link to published version |
Related project(s):
41Geometrically defined asymptotic coordinates in general relativity
In 2015, Mantoulidis and Schoen constructed 3-dimensional asymptotically Euclidean manifolds with non-negative scalar curvature whose ADM mass can be made arbitrarily close to the optimal value of the Riemannian Penrose Inequality, while the intrinsic geometry of the outermost minimal surface can be ``far away'' from being round. The resulting manifolds, called extensions, are geometrically not ``close'' to a spatial Schwarzschild manifold. This suggests instability of the Riemannian Penrose Inequality. Their construction was later adapted to n+1 dimensions by Cabrera Pacheco and Miao, suggesting instability of the higher dimensional Riemannian Penrose Inequality. In recent papers by Alaee, Cabrera Pacheco, and Cederbaum and by Cabrera Pacheco, Cederbaum, and McCormick, a similar construction was performed for asymptotically Euclidean, electrically charged initial data sets and for asymptotically hyperbolic Riemannian manifolds, respectively, obtaining 3-dimensional extensions that suggest instability of the Riemannian Penrose Inequality with electric charge and of the conjectured asymptotically hyperbolic Riemannian Penrose Inequality in 3 dimensions. This paper combines and generalizes all the aforementioned results by constructing suitable asymptotically hyperbolic or asymptotically Euclidean extensions with electric charge in n+1 dimensions for n greater or equal to 2.
Besides suggesting instability of a naturally conjecturally generalized Riemannian Penrose Inequality, the constructed extensions give insights into an ad hoc generalized notion of Bartnik mass, similar to the Bartnik mass estimate for minimal surfaces proven by Mantoulidis and Schoen via their extensions, and unifying the Bartnik mass estimates in the various scenarios mentioned above.
Related project(s):
40Construction of Riemannian manifolds with scalar curvature constraints and applications to general relativity41Geometrically defined asymptotic coordinates in general relativity
Photon surfaces are timelike, totally umbilic hypersurfaces of Lorentzian spacetimes. In the first part of this paper, we locally characterize all possible photon surfaces in a class of static, spherically symmetric spacetimes that includes Schwarzschild, Reissner--Nordström, Schwarzschild-anti de Sitter, etc., in n+1dimensions. In the second part, we prove that any static, vacuum, "asymptotically isotropic" n+1-dimensional spacetime that possesses what we call an "equipotential" and "outward directed" photon surface is isometric to the Schwarzschild spacetime of the same (necessarily positive) mass, using a uniqueness result by the first named author.
Journal | accepted in JMP |
Link to preprint version |
Related project(s):
5Index theory on Lorentzian manifolds
The Bartnik mass is a notion of quasi-local mass which is remarkably difficult to compute. Mantoulidis and Schoen [2016] developed a novel technique to construct asymptotically flat extensions of minimal Bartnik data in such a way that the ADM mass of these extensions is well-controlled, and thus, they were able to compute the Bartnik mass for minimal spheres satisfying a stability condition. In this work, we develop extensions and gluing tools, à la Mantoulidis and Schoen, for time-symmetric initial data sets for the Einstein-Maxwell equations that allow us to compute the value of an ad-hoc notion of charged Barnik mass for suitable charged minimal Bartnik data.
Journal | ADV. THEOR. MATH. PHYS |
Volume | 23 (0) |
Pages | 1951--1980 |
Link to preprint version |
Related project(s):
5Index theory on Lorentzian manifolds
We investigate Bartnik's static metric extension conjecture under the additional assumption of axisymmetry of both the given Bartnik data and the desired static extensions. To do so, we suggest a geometric flow approach, coupled to the Weyl-Papapetrou formalism for axisymmetric static solutions to the Einstein vacuum equations. The elliptic Weyl-Papapetrou system becomes a free boundary value problem in our approach. We study this new flow and the coupled flow--free boundary value problem numerically and find axisymmetric static extensions for axisymmetric Bartnik data in many situations, including near round spheres in spatial Schwarzschild of positive mass.
Journal | Pure and Applied Mathematics Quaterly |
Link to preprint version |
Related project(s):
5Index theory on Lorentzian manifolds
We study the set of trapped photons of a subcritical (a<M) Kerr spacetime as a subset of the phase space. First, we present an explicit proof that the photons of constant Boyer--Lindquist coordinate radius are the only photons in the Kerr exterior region that are trapped in the sense that they stay away both from the horizon and from spacelike infinity. We then proceed to identify the set of trapped photons as a subset of the (co-)tangent bundle of the subcritical Kerr spacetime. We give a new proof showing that this set is a smooth 5-dimensional submanifold of the (co-)tangent bundle with topology SO(3)×R2 using results about the classification of 3-manifolds and of Seifert fiber spaces. Both results are covered by the rigorous analysis of Dyatlov [5]; however, the methods we use are very different and shed new light on the results and possible applications.
Journal | General Relativity and Gravitation |
Publisher | Springer |
Link to preprint version |
Related project(s):
5Index theory on Lorentzian manifolds
Mantoulidis and Schoen developed a novel technique to handcraft asymptotically flat extensions of Riemannian manifolds (Σ≅S2,g), with g satisfying λ1=λ1(−Δg+K(g))>0, where λ1 is the first eigenvalue of the operator −Δg+K(g) and K(g) is the Gaussian curvature of g, with control on the ADM mass of the extension. Remarkably, this procedure allowed them to compute the Bartnik mass in this so-called minimal case; the Bartnik mass is a notion of quasi-local mass in General Relativity which is very challenging to compute. In this survey, we describe the Mantoulidis-Schoen construction, its impact and influence in subsequent research related to Bartnik mass estimates when the minimality assumption is dropped, and its adaptation to other settings of interest in General Relativity.
Related project(s):
5Index theory on Lorentzian manifolds
We propose a new foliation of asymptotically Euclidean initial data sets by 2-spheres of constant spacetime mean curvature (STCMC). The leaves of the foliation have the STCMC-property regardless of the initial data set in which the foliation is constructed which asserts that there is a plethora of STCMC 2-spheres in a neighborhood of spatial infinity of any asymptotically flat spacetime. The STCMC-foliation can be understood as a covariant relativistic generalization of the CMC-foliation suggested by Huisken and Yau. We show that a unique STCMC-foliation exists near infinity of any asymptotically Euclidean initial data set with non-vanishing energy which allows for the definition of a new notion of total center of mass for isolated systems. This STCMC-center of mass transforms equivariantly under the asymptotic Poincaré group of the ambient spacetime and in particular evolves under the Einstein evolution equations like a point particle in Special Relativity. The new definition also remedies subtle deficiencies in the CMC-approach to defining the total center of mass suggested by Huisken and Yau which were described by Cederbaum and Nerz.
Journal | Calc. Var. PDE (accepted) |
Link to preprint version |
Related project(s):
5Index theory on Lorentzian manifolds
The Bartnik mass is a quasi-local mass tailored to asymptotically flat Riemannian manifolds with non-negative scalar curvature. From the perspective of general relativity, these model time-symmetric domains obeying the dominant energy condition without a cosmological constant. There is a natural analogue of the Bartnik mass for asymptotically hyperbolic Riemannian manifolds with a negative lower bound on scalar curvature which model time-symmetric domains obeying the dominant energy condition in the presence of a negative cosmological constant. Following the ideas of Mantoulidis and Schoen [2016], of Miao and Xie [2016], and of joint work of Miao and the authors [2017], we construct asymptotically hyperbolic extensions of minimal and constant mean curvature (CMC) Bartnik data while controlling the total mass of the extensions. We establish that for minimal surfaces satisfying a stability condition, the Bartnik mass is bounded above by the conjectured lower bound coming from the asymptotically hyperbolic Riemannian Penrose inequality. We also obtain estimates for such a hyperbolic Bartnik mass of CMC surfaces with positive Gaussian curvature.
Journal | J. Geom. Phys. |
Publisher | Elsevier |
Volume | 132 |
Pages | 338--357 |
Link to preprint version | |
Link to published version |
Related project(s):
5Index theory on Lorentzian manifolds