Probabilistic and spectral properties of weighted Riemannian manifolds with Kato bounded Bakry- Émery-Ricci curvature

A weighted Riemannian manifold is pair $(M,\Psi)$ given by a Riemannian manifold $M$ and a function $\Psi\in W^{2,2}_{\mathrm{loc}}(M)$, the weight function. In typical situations that we have in mind, $\Psi$ is indeed not smooth: this happens, for example, if one takes $\Psi$ to be the groundstate of a molecule with $m$ electrons, and $M$ the Euclidean $\mathbb{R}^{3m}$.

Such a pair canonically induces:

  • the weighted Laplacian $\Delta_{\Psi}\geq 0$ in the weighted $L^2$-space $L^2(M,\Psi)$,
  • the weighted heat semigroup $e^{t\Delta_{\Psi}}$ in $L^2(M,\Psi)$, $t>0$, whose integral kernel $e^{t\Delta_{\Psi}}(x,y)$, $t>0$, $x,y\in M$, is called the weighted heat kernel,
  • a diffusion process, the weighted Brownian motion, whose transition density is induced by $e^{t\Delta_{\Psi}}(x,y)$.

A central geometric object in this context is the Bakry-Émery Ricci curvature, given by $$\mathrm{Ric}_{\Psi}=\mathrm{Ric}+2\nabla^2 \Psi$$ whose study under minimal local regularity assumptions on $\Psi$ is one of the main objectives of this project. Note that in the above mentioned molecular case the Bakry-Émery Ricci curvature becomes the symmetric matrix $\mathrm{Ric}_{\Psi}=2\nabla^2 \Psi$, which carries local singularities, but (as we have shown in our previous work) neverthess has a variable lower bound in the so called Kato class of $(M,\Psi)$.

Some of the main goals of this project are:

  • to study parabolicity and stochastic completeness of the underlying diffusion on $(M,\Psi)$ under variable (Kato or Dynkin type) lower bounds $\mathrm{Ric}_{\Psi}$, in particular dealing with all technical issues arising from the nonsmoothness of $\Psi$.
  • to use the unitary equivalence of a Schrödinger operator $\Delta+V$ to some $\Delta_{\Psi}$ via the ground state transform, in order to derive eigenvalue estimates for molecular Schrödinger operators using probabilistic and geometric methods for $\Delta_{\Psi}$. As our previous considerations indicate, these results are closely connected with Harnack inequalities for Schrödinger operators on Riemannian manifolds.
  •  to use the above unitary equivalence in order to transfer scattering problems for Schrödinger operators (where the potentials are scattered) to two-Hilbert-space scattering problems for weighted Laplacians (where the weight functions are scattered); use geometric and probabilistic methods to the study the latter.
  • to characterize variable lower bounds for $\mathrm{Ric}_{\Psi}$ in terms of the existence of appropriate couplings of weighted Brownian motions; obtain similar characterizations in terms of weighted Brownian bridges.



    Team Members

    Dr. habil. Batu Güneysu
    Project leader
    University of Bonn

    This website uses cookies

    By using this page, browser cookies are set. Read more ›