The coarse co-assembly map was introduced by Emerson and Meyer as a dual to the coarse assembly map. These two maps are mutually adjoint with respect to canonical pairings.

The main objective of our project is to further develop this coarse duality theory by studying analogues of multiplicative structures known from algebraic topology such as cup and cap products as well as external and slant products.

Many of these multiplicative structures have direct interpretations in terms of Dirac operators and vector bundles leading to new applications in index theory and geometric topology.

In addition, we will develop coarse versions of well-known results from algebraic topology involving multiplicative structures.

Most notably, we want to investigate a coarse version of Poincaré duality.

Furthermore, the question of whether coarse assembly and co-assembly are isomorphisms will also be examined in certain cases. We have a special focus on spaces which admit nice coarse compactifications constructed from coarse geometric versions of contractions or, more generally, deformation retractions. Such coarse deformation retractions are also key to the construction of secondary cup and cap products, establishing a close link between the two main aspects of our project.

## Publications

We prove a positive mass theorem for spin initial data sets \((M,g,k)\) that contain an asymptotically flat end and a shield of dominant energy (a subset of M on which the dominant energy scalar \(μ−|J|\) has a positive lower bound). In a similar vein, we show that for an asymptotically flat end \(\mathcal{E}\) that violates the positive mass theorem (i.e. \(\mathrm{E}<|\mathrm{P}|\)), there exists a constant \(R > 0\), depending only on \(\mathcal{E}\), such that any initial data set containing \(\mathcal{E}\) must violate the hypotheses of Witten's proof of the positive mass theorem in an \(R\)-neighborhood of \(\mathcal{E}\). This implies the positive mass theorem for spin initial data sets with arbitrary ends, and we also prove a rigidity statement. Our proofs are based on a modification of Witten's approach to the positive mass theorem involving an additional independent timelike direction in the spinor bundle.

**Related project(s):****42**Spin obstructions to metrics of positive scalar curvature on nonspin manifolds**78**Duality and the coarse assembly map II

Let \(M\) be an orientable connected \(n\)-dimensional manifold with \(n\in\{6,7\}\) and let \(Y\subset M\) be a two-sided closed connected incompressible hypersurface which does not admit a metric of positive scalar curvature (abbreviated by psc). Moreover, suppose that the universal covers of \(M\) and \(Y\) are either both spin or both non-spin. Using Gromov's \(\mu\)-bubbles, we show that \(M\) does not admit a complete metric of psc. We provide an example showing that the spin/non-spin hypothesis cannot be dropped from the statement of this result. This answers, up to dimension \(7\), a question by Gromov for a large class of cases. Furthermore, we prove a related result for submanifolds of codimension two. We deduce as special cases that, if \(Y\) does not admit a metric of psc and \(\dim(Y) \neq 4\), then \(M := Y\times\mathbb{R}\) does not carry a complete metric of psc and \(N := Y \times \mathbb{R}^2\) does not carry a complete metric of uniformly psc provided that \(\dim(M) \leq 7\) and \(\dim(N) \leq 7\), respectively. This solves, up to dimension \(7\), a conjecture due to Rosenberg and Stolz in the case of orientable manifolds.

Journal | Journal of Topology |

Volume | 16.3 |

Pages | 855-876 |

Link to preprint version | |

Link to published version |

**Related project(s):****42**Spin obstructions to metrics of positive scalar curvature on nonspin manifolds**78**Duality and the coarse assembly map II

In this survey, we give an overview of recent applications of Callias operators to the geometry of scalar curvature. A Callias operator is an operator of the form \(\mathcal{B}_\psi = \mathcal{D} + \mathcal{G}_\psi\), where *\(\mathcal{D}\)* is a Dirac operator and \(\mathcal{G}_\psi\) is an order zero term depending on a scalar-valued function \(\psi\). The zero order term modifies the Schrödinger–Lichnerowicz formula by a differential expression in the function \(\psi\) that can be related to distance estimates. This fact allows to use the Dirac method to derive sharp quantitative estimates in the presence of lower scalar curvature bounds in the spirit of metric inequalities with scalar curvature as proposed by Gromov.

Book | M Gromov, B. Lawson (eds): Perspectives in Scalar Curvature |

Volume | 1 |

Pages | 515-542 |

Link to preprint version | |

Link to published version |

**Related project(s):****42**Spin obstructions to metrics of positive scalar curvature on nonspin manifolds**78**Duality and the coarse assembly map II

In previous definition of $\mathrm{E}$-theory, separability of the $\mathrm{C}^*$-algebras is needed either to construct the composition product or to prove the long exact sequences.

Considering the latter, the potential failure of the long exact sequences can be traced back to the fact that these $\mathrm{E}$-theory groups accommodate information about asymptotic processes in which one real parameter goes to infinity, but not about more complicated asymptotics parametrized by directed sets.

We propose a definition for $\mathrm{E}$-theory which also incorporates this additional information by generalizing the notion of asymptotic algebras. As a consequence, it not only has all desirable products but also all long exact sequences, even for non-separable $\mathrm{C}^*$-algebras.

More precisely, our construction yields equivariant $\mathrm{E}$-theory for $\mathbb{Z}_2$-graded $G$-$\mathrm{C}^*$-algebras for arbitrary discrete groups $G$.

We suspect that our model for $\mathrm{E}$-theory could be the right entity to investigate index theory on infinite dimensional manifolds.

**Related project(s):****10**Duality and the coarse assembly map**78**Duality and the coarse assembly map II

We construct secondary cup and cap products on coarse (co-)homology theories from given cross and slant products. They are defined for coarse spaces relative to weak generalized controlled deformation retracts.

On ordinary coarse cohomology, our secondary cup product agrees with a secondary product defined by Roe. For coarsifications of topological coarse (co-)homology theories, our secondary cup and cap products correspond to the primary cup and cap products on Higson dominated coronas via transgression maps. And in the case of coarse $\mathrm{K}$-theory and -homology, the secondary products correspond to canonical primary products between the $\mathrm{K}$-theories of the stable Higson corona and the Roe algebra under assembly and co-assembly.

Journal | Research in the Mathematical Sciences |

Volume | 8, Article number: 36 |

Pages | 64p |

Link to preprint version | |

Link to published version |

**Related project(s):****10**Duality and the coarse assembly map**78**Duality and the coarse assembly map II

Let \(\mathcal{E}\) be an asymptotically Euclidean end in an otherwise arbitrary complete and connected Riemannian spin manifold \((M,g)\). We show that if \(\mathcal{E}\) has negative ADM-mass, then there exists a constant \(R > 0\), depending only on \(\mathcal{E}\), such that \(M\) must become incomplete or have a point of negative scalar curvature in the \(R\)-neighborhood around \(\mathcal{E}\) in \(M\). This gives a quantitative answer to Schoen and Yau's question on the positive mass theorem with arbitrary ends for spin manifolds. Similar results have recently been obtained by Lesourd, Unger and Yau without the spin condition in dimensions \(\leq 7\) assuming Schwarzschild asymptotics on the end \(\mathcal{E}\). We also derive explicit quantitative distance estimates in case the scalar curvature is uniformly positive in some region of the chosen end \(\mathcal{E}\). Here we obtain refined constants reminiscent of Gromov's metric inequalities with scalar curvature.

**Related project(s):****42**Spin obstructions to metrics of positive scalar curvature on nonspin manifolds**78**Duality and the coarse assembly map II

We use the Dirac operator technique to establish sharp distance estimates for compact spin manifolds under lower bounds on the scalar curvature in the interior and on the mean curvature of the boundary. In the situations we consider, we thereby give refined answers to questions on metric inequalities recently proposed by Gromov. This includes optimal estimates for Riemannian bands and for the long neck problem. In the case of bands over manifolds of non-vanishing \(\widehat{\mathrm{A}}\)-genus, we establish a rigidity result stating that any band attaining the predicted upper bound is isometric to a particular warped product over some spin manifold admitting a parallel spinor. Furthermore, we establish scalar- and mean curvature extremality results for certain log-concave warped products. The latter includes annuli in all simply-connected space forms. On a technical level, our proofs are based on new spectral estimates for the Dirac operator augmented by a Lipschitz potential together with local boundary conditions.

**Related project(s):****42**Spin obstructions to metrics of positive scalar curvature on nonspin manifolds**78**Duality and the coarse assembly map II

## Team Members

**Dr. Christopher Wulff**

Project leader

Georg-August-Universität Göttingen

christopher.wulff(at)mathematik.uni-goettingen.de

**Dr. Rudolf Zeidler**

Project leader

Westfälischen Wilhelms-Universität Münster

rudolf.zeidler(at)uni-muenster.de