Dr. Jiawei Liu
Researcher
Otto-von-Guericke-Universität Magdeburg
Telephone: +49 391 67-51993
Project
31Solutions to Ricci flow whose scalar curvature is bounded in Lp.
75Solutions to Ricci flow whose scalar curvature is bounded in L^p II
Publications within SPP2026
In this paper, we consider the stability of the generalized Lagrangian mean curvature flow of graph case in the cotangent bundle, which is first defined by Smoczyk-Tsui-Wang [14]. By new estimates of derivatives along the flow, we weaken the initial condition and remove the positive curvature condition in [14]. More precisely, we prove that if the graph induced by a closed $1$-form is a special Lagrangian submanifold in the cotangent bundle of a Riemannian manifold, then the generalized Lagrangian mean curvature flow is stable near it.
Journal | Annals of PDE |
Link to preprint version | |
Link to published version |
Related project(s):
31Solutions to Ricci flow whose scalar curvature is bounded in Lp.75Solutions to Ricci flow whose scalar curvature is bounded in L^p II
We consider a general class of non-homogeneous contracting flows of convex hypersurfaces in \(\mathbb R^{n+1}\), and prove the existence and regularity of the flow before extincting to a point in finite time.
Journal | Advanced Nonlinear Studies |
Link to preprint version | |
Link to published version |
Related project(s):
31Solutions to Ricci flow whose scalar curvature is bounded in Lp.75Solutions to Ricci flow whose scalar curvature is bounded in L^p II
In this paper, we show the relation between the existence of twisted conical Kähler-Ricci solitons and the greatest log Bakry-Emery-Ricci lower bound on Fano manifolds. This is based on our proofs of some openness theorems on the existence of twisted conical Kähler-Ricci solitons, which generalize Donaldson's existence conjecture and openness theorem of the conical Kähler-Einstein metrics to the conical soliton case.
Journal | Science China Mathematics |
Link to preprint version | |
Link to published version |
Related project(s):
31Solutions to Ricci flow whose scalar curvature is bounded in Lp.75Solutions to Ricci flow whose scalar curvature is bounded in L^p II
In this paper, by using smooth approximation, we give a new proof of Donaldson's existence conjecture that there exist conical Kähler-Einstein metrics with positive Ricci curvatures on Fano manifolds.
Journal | Communications in Analysis and Geometry |
Link to preprint version |
Related project(s):
31Solutions to Ricci flow whose scalar curvature is bounded in Lp.75Solutions to Ricci flow whose scalar curvature is bounded in L^p II
In this paper, we study the stability of the conical Kähler-Ricci flows on Fano manifolds. That is, if there exists a conical Kähler-Einstein metric with cone angle $2\pi\beta$ along the divisor, then for any $\beta'$ sufficiently close to $\beta$, the corresponding conical Kähler-Ricci flow converges to a conical Kähler-Einstein metric with cone angle $2\pi\beta'$ along the divisor. Here, we only use the condition that the Log Mabuchi energy is bounded from below. This is a weaker condition than the properness that we have adopted to study the convergence before. As corollaries, we give parabolic proofs of Donaldson's openness theorem and his existence conjecture for the conical Kähler-Einstein metrics with positive Ricci curvatures.
Journal | Communications in Partial Differential Equations |
Link to preprint version | |
Link to published version |
Related project(s):
31Solutions to Ricci flow whose scalar curvature is bounded in Lp.75Solutions to Ricci flow whose scalar curvature is bounded in L^p II
In this paper, we establish the existence and uniqueness of Ricci flow that admits an embedded closed convex surface in $\mathbb{R}^3$ as metric initial condition. The main point is a family of smooth Ricci flows starting from smooth convex surfaces whose metrics converge uniformly to the metric of the initial surface in intrinsic sense.
Related project(s):
75Solutions to Ricci flow whose scalar curvature is bounded in L^p II
In this paper, we study the limiting flow of conical Kähler-Ricci flows when the cone angles tend to $0$. We prove the existence and uniqueness of this limiting flow with cusp singularity on compact Kähler manifold $M$ which carries a smooth hypersurface $D$ such that the twisted canonical bundle $K_M+D$ is ample. Furthermore, we prove that this limiting flow converge to a unique cusp Kähler-Einstein metric.
Journal | Annali di Matematica Pura ed Applicata (1923 -) |
Link to preprint version |
Related project(s):
31Solutions to Ricci flow whose scalar curvature is bounded in Lp.
In this paper, we study the long-time behavior of modified Calabi flow to study the existence of generalized Kähler-Ricci soliton. We first give a new expression of the modified $K$-energy and prove its convexity along weak geodesics. Then we extend this functional to some finite energy spaces. After that, we study the long-time behavior of modified Calabi flow.
Journal | The Journal of Geometric Analysis |
Link to preprint version |
Related project(s):
31Solutions to Ricci flow whose scalar curvature is bounded in Lp.
In this paper, by providing the uniform gradient estimates for approximating equations, we prove the existence, uniqueness and regularity of conical parabolic complex Monge-Ampère equation with weak initial data. As an application, we obtain a regularity estimate, that is, any $L^{\infty}$-solution of the conical complex Monge-Ampère equation admits the $C^{2,\alpha,\beta}$-regularity.
Journal | Calculus of Variations and Partial Differential Equations |
Link to preprint version |
Related project(s):
31Solutions to Ricci flow whose scalar curvature is bounded in Lp.