## Prof. Dr. Wilderich Tuschmann

### Project leader

Karlsruher Institut für Technologie

E-mail: wilderich.tuschmann(at)kit.edu

Telephone: +49 721 608 43942

Homepage: http://www.math.kit.edu/iag5/~tuschmann/

## Publications within SPP2026

We show that in each dimension 4n+3, n>1, there exist infinite sequences of closed smooth simply connected manifolds M of pairwise distinct homotopy type for which the moduli space of Riemannian metrics with nonnegative sectional curvature has infinitely many path components. Closed manifolds with these properties were known before only in dimension 7, and our result also holds for moduli spaces of Riemannian metrics with positive Ricci curvature. Moreover, inconjunction with work of Belegradek, Kwasik and Schultz, we obtain that for each such M the moduli space of complete nonnegative sectional curvature metrics on the open simply connected manifold M × R also has infinitely many path components.

Journal | Bulletin of the London Math. Society |

Volume | 50 |

Pages | 96-107 |

Link to preprint version | |

Link to published version |

**Related project(s):****15**Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds

We study spaces and moduli spaces of Riemannian metrics with non-negative Ricci or non-negative sectional curvature on closed and open manifolds and construct, in particular, the first classes of manifolds for which these spaces have non-trivial rational homotopy, homology and cohomology groups. We also show that in every dimension at least seven (respectively, at least eight) there exist closed (respectively, open) manifolds for which the moduli space of Riemannian metrics with non-negative sectional curvature has infinitely many path components. An analogous statement holds for spaces of non-negative Ricci curvature metrics in every dimension at least eleven (respectively, twelve).

**Related project(s):****15**Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds