Prof. Dr. Sourav Ghosh
Project leader
Ashoka University
E-mail: sourav.ghosh(at)ashoka.edu.in
Homepage: https://sites.google.com/site/souravghos…
Project
12Anosov representations and Margulis spacetimes
Publications within SPP2026
In this article, we interpret affine Anosov representations of any word hyperbolic group in \(\mathsf{SO}_0(n−1,n)⋉\mathbb{R}^{2n−1}\) as infinitesimal versions of representations of word hyperbolic groups in \(\mathsf{SO}_0(n,n)\) which are both Anosov in \(\mathsf{SO}_0(n,n)\) with respect to the stabilizer of an oriented (n−1)-dimensional isotropic plane and Anosov in \(\mathsf{SL}(2n,\mathbb{R})\) with respect to the stabilizer of an oriented n-dimensional plane. Moreover, we show that representations of word hyperbolic groups in \(\mathsf{SO}_0(n,n)\) which are Anosov in \(\mathsf{SO}_0(n,n)\) with respect to the stabilizer of an oriented (n−1)-dimensional isotropic plane, are Anosov in \(\mathsf{SL}(2n,\mathbb{R})\) with respect to the stabilizer of an oriented n-dimensional plane if and only if its action on \(\mathsf{SO}_0(n,n)/\mathsf{SO}_0(n-1,n)\) is proper. In the process, we also provide various different interpretations of the Margulis invariant.
Related project(s):
12Anosov representations and Margulis spacetimes