Members & Guests

Dr. Gye Seon Lee

Project leader

Ruprecht-Karls-Universität Heidelberg

E-mail: lee(at)
Telephone: +49-6221-54-14219

Publications within SPP2026

We extend the notion of Hitchin component from surface groups to orbifold groups and prove that this gives new examples of Higher Teichmüller spaces. We show that the Hitchin component of an orbifold group is homeomorphic to an open ball, and we compute its dimension explicitly. For example, the Hitchin component of the right-angled hyperbolic \(\ell\)-polygon reflection group into \(\mathrm{PGL}(2m,\mathbb{R})\), resp. \(\mathrm{PGL}(2m+1,\mathbb{R})\), is homeomorphic to an open ball of dimension \((\ell-4)m^2+1\), resp. \((\ell-4)(m^2+m)\). We also give applications to the study of the pressure metric and the deformation theory of real projective structures on 3-manifolds.


Related project(s):
1Hitchin components for orbifolds

For d = 4, 5, 6, 7, 8, we exhibit examples of \(\mathrm{AdS}^{d,1}\) strictly GHC-regular groups which are not quasi-isometric to the hyperbolic space \(\mathbb{H}^d\), nor to any symmetric space. This provides a negative answer to Question 5.2 in [9A12] and disproves Conjecture 8.11 of Barbot-Mérigot [BM12]. We construct those examples using the Tits representation of well-chosen Coxeter groups. On the way, we give an alternative proof of Moussong's hyperbolicity criterion [Mou88] for Coxeter groups built on Danciger-Guéritaud-Kassel [DGK17] and find examples of Coxeter groups W such that the space of strictly GHC-regular representations of W into \(\mathrm{PO}_{d,2}(\mathbb{R})\) up to conjugation is disconnected.


Related project(s):
1Hitchin components for orbifolds

  • 1

This website uses cookies

By using this page, browser cookies are set. Read more