Dr. Gye Seon Lee
Project leader
Ruprecht-Karls-Universität Heidelberg
E-mail: lee(at)mathi.uni-heidelberg.de
Telephone: +49-6221-54-14219
Homepage: https://www.mathi.uni-heidelberg.de/~lee…
Project
1Hitchin components for orbifolds
Publications within SPP2026
In order to obtain a closed orientable convex projective 4-manifold with small positive Euler characteristic, we build an explicit example of convex projective Dehn filling of a cusped hyperbolic 4-manifold through a continuous path of projective cone-manifolds.
Journal | Publicacions Matemàtiques |
Volume | 66 |
Pages | 369-403 |
Link to preprint version | |
Link to published version |
Related project(s):
1Hitchin components for orbifolds
For d = 4, 5, 6, 7, 8, we exhibit examples of \(\mathrm{AdS}^{d,1}\) strictly GHC-regular groups which are not quasi-isometric to the hyperbolic space \(\mathbb{H}^d\), nor to any symmetric space. This provides a negative answer to Question 5.2 in a work of Barbot et al. and disproves Conjecture 8.11 of Barbot-Mérigot [Groups Geom. Dyn. 6 (2012), pp. 441-483]. We construct those examples using the Tits representation of well-chosen Coxeter groups. On the way, we give an alternative proof of Moussong's hyperbolicity criterion (Ph.D. Thesis) for Coxeter groups built on Danciger-Guéritaud-Kassel's 2017 work and find examples of Coxeter groups W such that the space of strictly GHC-regular representations of W into \(\mathrm{PO}_{d,2}(\mathbb{R})\) up to conjugation is disconnected.
Journal | Transactions of the American Mathematical Society |
Volume | 372 |
Pages | 153-186 |
Link to preprint version | |
Link to published version |
Related project(s):
1Hitchin components for orbifolds
We extend the notion of Hitchin component from surface groups to orbifold groups and prove that this gives new examples of higher Teichmüller spaces. We show that the Hitchin component of an orbifold group is homeomorphic to an open ball and we compute its dimension explicitly. We then give applications to the study of the pressure metric, cyclic Higgs bundles, and the deformation theory of real projective structures on 3-manifolds.
Journal | Journal of the European Mathematical Society |
Link to preprint version | |
Link to published version |
Related project(s):
1Hitchin components for orbifolds