## Publications of SPP2026

On this site you find preprints and publications produced within the projects and with the support of the DFG priority programme „Geometry at Infinity“.

The main result of this paper is that when *M*_0, *M_*1 are two simply connected spin manifolds of the same dimension *d*≥5 which both admit a metric of positive scalar curvature, the spaces *\mathcal{M}^*+(*M*0) and *\mathcal{M}^*+(*M_*1) of such metrics are homotopy equivalent. This supersedes a previous result of Chernysh and Walsh which gives the same conclusion when *M_*0 and *M*_1 are also spin cobordant.

We also prove an analogous result for simply connected manifolds which do not admit a spin structure; we need to assume that *d*≠8 in that case.

**Related project(s):****15**Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds

By arithmeticity and superrigidity, a commensurability class of lattices in a higher rank Lie group is defined by a unique algebraic group over a unique number subfield of \(\mathbb{R}\) or \(\mathbb{C}\). We prove an adelic version of superrigidity which implies that two such commensurability classes define the same profinite commensurability class if and only if the algebraic groups are adelically isomorphic. We discuss noteworthy consequences on profinite rigidity questions.

**Related project(s):****58**Profinite perspectives on l2-cohomology

We investigate which higher rank simple Lie groups admit profinitely but not abstractly commensurable lattices. We show that no such examples exist for the complex forms of type \(E_8\), \(F_4\), and \(G_2\). In contrast, there are arbitrarily many such examples in all other higher rank Lie groups, except possibly \(\mathrm{SL}_{2n+1}(\mathbb{R})\), \(\mathrm{SL}_{2n+1}(\mathbb{C})\), \(\mathrm{SL}_n(\mathbb{H})\), or groups of type~\(E_6\).

**Related project(s):****58**Profinite perspectives on l2-cohomology

We define and study generalizations of simplicial volume over arbitrary seminormed rings with a focus on p-adic simplicial volumes. We investigate the dependence on the prime and establish homology bounds in terms of p-adic simplicial volumes. As the main examples, we compute the weightless and p-adic simplicial volumes of surfaces. This is based on an alternative way to calculate classical simplicial volume of surfaces without hyperbolic straightening and shows that surfaces satisfy mod p and p-adic approximation of simplicial volume.

Journal | Glasgow Math. Journal |

Link to preprint version | |

Link to published version |

**Related project(s):****58**Profinite perspectives on l2-cohomology

We prove stability of integrable ALE manifolds with a parallel spinor under Ricci flow, given an initial metric which is close in $L^p\cap L^{\infty}$, for any $p\in (1,n)$, where *$n$* is the dimension of the manifold. In particular, our result applies to all known examples of 4-dimensional gravitational instantons. Our decay rates are strong enough to prove positive scalar curvature rigidity in $L^p$, for each $p\in [1,\frac{n}{n-2})$, generalizing a result by Appleton.

**Related project(s):****21**Stability and instability of Einstein manifolds with prescribed asymptotic geometry

A geodesic *γ* in an abstract reflection space *X* (in the sense of Loos, without any assumption of differential structure) is known to canonically admits an action of a 1-parameter subgroup of the group of transvections of *X*. In this article, we prove an analog of this result stating that, if *X* contains an embedded hyperbolic plane, then this yields a canonical action of a subgroup of the transvection group of X isomorphic to a perfect central extension of PSL(2,R). This result can be further extended to arbitrary Riemannian symmetric spaces of non-compact type embedded in X and can be used to prove that a Riemannian symmetric space and, more generally, the Kac-Moody symmetric space G/K for an algebraically simply connected two-spherical Kac-Moody group G satisfies a universal property similar to the universal property that the group G satisfies itself.

Journal | Adv. Geometry |

Volume | 20 |

Pages | 499-506 |

Link to preprint version | |

Link to published version |

**Related project(s):****61**At infinity of symmetric spaces

In the present article we introduce and study a class of topological reflection spaces that we call Kac-Moody symmetric spaces. These generalize Riemannian symmetric spaces of non-compact type. We observe that in a non-spherical Kac-Moody symmetric space there exist pairs of points that do not lie on a common geodesic; however, any two points can be connected by a chain of geodesic segments. We moreover classify maximal flats in Kac-Moody symmetric spaces and study their intersection patterns, leading to a classification of global and local automorphisms. Unlike Riemannian symmetric spaces, non-spherical non-affine irreducible Kac-Moody symmetric spaces also admit an invariant causal structure. For causal and anti-causal geodesic rays with respect to this structure we find a notion of asymptoticity, which allows us to define a future and past boundary of such Kac-Moody symmetric space. We show that these boundaries carry a natural polyhedral structure and are cellularly isomorphic to the halves of the geometric realization of the twin buildings of the underlying split real Kac-Moody group. We also show that every automorphism of the symmetric space is uniquely determined by the induced cellular automorphism of the future and past boundary. The invariant causal structure on a non-spherical non-affine irreducible Kac-Moody symmetric space gives rise to an invariant pre-order on the underlying space, and thus to a subsemigroup of the Kac-Moody group. We conclude that while in some aspects Kac-Moody symmetric spaces closely resemble Riemannian symmetric spaces, in other aspects they behave similarly to ordered affine hovels, their non-Archimedean cousins.

Journal | Münster J. Math. |

Volume | 13 |

Pages | 1-114 |

Link to preprint version | |

Link to published version |

**Related project(s):****61**At infinity of symmetric spaces

We construct explicit geometric models for moduli spaces of stable parabolic Higgs bundles on the Riemann sphere, in the case of rank two, four marked points, any degree, and arbitrary weights. The construction mechanism relies on elementary geometric and combinatorial techniques, based on a detailed study of orbit stability of (in general non-reductive) bundle automorphism groups on carefully crafted spaces. These techniques are not exclusive to the case we examine. Therefore, this work elucidates a general approach to construct arbitrary moduli spaces of stable parabolic Higgs bundles in genus 0, which is encoded into the combinatorics of weight polytopes. Moreover, we present a comprehensive analysis of the geometric models' behavior under variation of weights and wall-crossing. This analysis is concentrated on their nilpotent cones, and is applicable to the study of the hyperkähler geometry of Hitchin metrics as gravitational instantons of ALG type.

**Related project(s):****69**Wall-crossing and hyperkähler geometry of moduli spaces

We prove a local version of the index theorem for Lorentzian Dirac-type operators on globally hyperbolic Lorentzian manifolds with Cauchy boundary. In case the Cauchy hypersurface is compact we do not assume self-adjointness of the Dirac operator on the spacetime or the associated elliptic Dirac operator on the boundary. In this case integration of our local index theorem results in a generalization of previously known index theorems for globally hyperbolic spacetimes that allows for twisting bundles associated with non-compact gauge groups.

**Related project(s):****37**Boundary value problems and index theory on Riemannian and Lorentzian manifolds

Based on the Atiyah-Patodi-Singer index formula, we construct an obstruction to positive scalar curvature metrics with mean convex boundaries on spin manifolds of infinite K-area. We also characterize the extremal case. Next we show a general deformation principle for boundary conditions of metrics with lower scalar curvature bounds. This implies that the relaxation of boundary conditions often induces weak homotopy equivalences of spaces of such metrics. This can be used to refine the smoothing of codimension-one singularites a la Miao and the deformation of boundary conditions a la Brendle-Marques-Neves, among others. Finally, we construct compact manifolds for which the spaces of positive scalar curvature metrics with mean convex boundaries have nontrivial higher homotopy groups.

**Related project(s):****37**Boundary value problems and index theory on Riemannian and Lorentzian manifolds**52**Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds II

These are the refereed proceedings of the 2019 'Australian-German Workshop on Differential Geometry in the Large' which represented a cross section of topics across differential geometry, geometric analysis and differential topology. The two-week programme featured talks treating geometric evolution equations, structures on manifolds, non-negative curvature and topics in Kähler, Alexandrov and Sasaki geometry as well as differential topology.

Journal | London Mathematical Society Lecture Notes Series |

Publisher | Cambridge University Press |

Book | Differential Geometry in the Large |

Volume | 463 |

Pages | 398 |

Link to preprint version | |

Link to published version |

**Related project(s):****52**Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds II

We find maximal representatives within equivalence classes of metric spheres. For Ahlfors regular spheres these are uniquely characterized by satisfying the seemingly unrelated notions of Sobolev-to-Lipschitz property, or volume rigidity. We also apply our construction to solutions of the Plateau problem in metric spaces and obtain a variant of the associated intrinsic disc studied by Lytchak--Wenger, which satisfies a related maximality condition.

Journal | Calc. Var. Partial Differential Equations |

Volume | 59 |

Link to preprint version | |

Link to published version |

**Related project(s):****24**Minimal surfaces in metric spaces

Assume you are given a finite configuration $\Gamma$ of disjoint rectifiable Jordan curves in $\mathbb{R}^n$. The Plateau-Douglas problem asks whether there exists a minimizer of area among all compact surfaces of genus at most $p$ which span $\Gamma$. While the solution to this problem is well-known, the classical approaches break down if one allows for singular configurations $\Gamma$ where the curves are potentially non-disjoint or self-intersecting. Our main result solves the Plateau-Douglas problem for such potentially singular configurations. Moreover, our proof works not only in $\mathbb{R}^n$ but in general proper metric spaces. Thus we are also able to extend previously known existence results of Jürgen Jost as well as of the second author together with Stefan Wenger for regular configurations. In particular, existence is new for disjoint configurations of Jordan curves in general complete Riemannian manifolds. A minimal surface of fixed genus $p$ bounding a given configuration $\Gamma$ need not always exist, even in the most regular settings. Concerning this problem, we also generalize the approach for singular configurations via minimal sequences satisfying conditions of cohesion and adhesion to the setting of metric spaces.

**Related project(s):****24**Minimal surfaces in metric spaces

We study the structure of the branch set of solutions to Plateau's problem in metric spaces satisfying a quadratic isoperimetric inequality. In our first result, we give examples of spaces with isoperimetric constant arbitrarily close to the Euclidean isoperimetric constant $(4\pi)^{−1}$ for which solutions have large branch set. This complements recent results of Lytchak--Wenger and Stadler stating, respectively, that any space with Euclidean isoperimetric constant is a CAT(0) space and solutions to Plateau's problem in a CAT(0) space have only isolated branch points. We also show that any planar cell-like set can appear as the branch set of a solution to Plateau's problem. These results answer two questions posed by Lytchak and Wenger. Moreover, we investigate several related questions about energy-minimizing parametrizations of metric disks: when such a map is quasisymmetric, when its branch set is empty, and when it is unique up to a conformal diffeomorphism.

**Related project(s):****24**Minimal surfaces in metric spaces

In this paper, we study curve shortening flow on Riemann surfaces with singular metrics. It turns out that this flow is governed by a degenerate quasilinear parabolic equation. Under natural geometric assumptions, we prove short-time existence, uniqueness, and regularity of the flow. We also show that the evolving curves stay fixed at the singular points of the surface and prove some collapsing and convergence results.

**Related project(s):****23**Spectral geometry, index theory and geometric flows on singular spaces**30**Nonlinear evolution equations on singular manifolds

We study $\ell^2$ Betti numbers, coherence, and virtual fibring of random groups in the few-relator model. In particular, random groups with negative Euler characteristic are coherent, have $\ell^2$ homology concentrated in dimension 1, and embed in a virtually free-by-cyclic group with high probability. Similar results are shown with positive probability in the zero Euler characteristic case.

**Related project(s):****8**Parabolics and invariants

We show that a finitely generated residually finite rationally solvable (or RFRS) group *G* is virtually fibred, in the sense that it admits a virtual surjection to $\mathbb Z$ with a finitely generated kernel, if and only if the first $L^2$-Betti number of *G* vanishes. This generalises (and gives a new proof of) the analogous result of Ian Agol for fundamental groups of 3-manifolds.

Journal | J. Amer. Math. Soc |

Link to preprint version | |

Link to published version |

**Related project(s):****8**Parabolics and invariants

We study the Newton polytopes of determinants of square matrices defined over rings of twisted Laurent polynomials. We prove that such Newton polytopes are single polytopes (rather than formal differences of two polytopes); this result can be seen as analogous to the fact that determinants of matrices over commutative Laurent polynomial rings are themselves polynomials, rather than rational functions. We also exhibit a relationship between the Newton polytopes and invertibility of the matrices over Novikov rings, thus establishing a connection with the invariants of Bieri-Neumann-Strebel (BNS) via a theorem of Sikorav.

We offer several applications: we reprove Thurston's theorem on the existence of a polytope controlling the BNS invariants of a 3-manifold group; we extend this result to free-by-cyclic groups, and the more general descending HNN extensions of free groups. We also show that the BNS invariants of Poincare duality groups of type F in dimension 3 and groups of deficiency one are determined by a polytope, when the groups are assumed to be agrarian, that is their integral group rings embed in skew-fields. The latter result partially confirms a conjecture of Friedl.

We also deduce the vanishing of the Newton polytopes associated to elements of the Whitehead groups of many groups satisfying the Atiyah conjecture. We use this to show that the *L*2-torsion polytope of Friedl-Lueck is invariant under homotopy. We prove the vanishing of this polytope in the presence of amenability, thus proving a conjecture of Friedl-Lueck-Tillmann.

Journal | Invent. Math. |

Link to preprint version | |

Link to published version |

**Related project(s):****8**Parabolics and invariants

For every Lie group *G*, we compute the maximal *n* such that an *n*-fold product of nonabelian free groups embeds into *G*.

**Related project(s):****18**Analytic L2-invariants of non-positively curved spaces

This paper relates different approaches to the asymptotic geometry of the

Hitchin moduli space of SL(2,C) Higgs bundles on a closed Riemann surface and,

via the nonabelian Hodge theorem, the character variety of SL(2,C)

representations of a surface group. Specifically, we find an asymptotic

correspondence between the analytically defined limiting configuration of a

sequence of solutions to the self-duality equations constructed by

Mazzeo-Swoboda-Weiss-Witt, and the geometric topological shear-bend parameters

of equivariant pleated surfaces due to Bonahon and Thurston. The geometric link

comes from a study of high energy harmonic maps. As a consequence we prove: (1)

the local invariance of the partial compactification of the moduli space by

limiting configurations; (2) a refinement of the harmonic maps characterization

of the Morgan-Shalen compactification of the character variety; and (3) a

comparison between the family of complex projective structures defined by a

quadratic differential and the realizations of the corresponding flat

connections as Higgs bundles, as well as a determination of the asymptotic

shear-bend cocycle of Thurston's pleated surface.

**Related project(s):****27**Invariants and boundaries of spaces**32**Asymptotic geometry of the Higgs bundle moduli space