Publications

Publications of SPP2026

On this site you find preprints and publications produced within the projects and with the support of the DFG priority programme „Geometry at Infinity“.

all projects
  • all projects
  • 01Hitchin components for orbifolds
  • 02Asymptotic geometry of sofic groups and manifolds
  • 03Geometric operators on a class of manifolds with bounded geometry
  • 04Secondary invariants for foliations
  • 05Index theory on Lorentzian manifolds
  • 06Spectral Analysis of Sub-Riemannian Structures
  • 07Asymptotic geometry of moduli spaces of curves
  • 08Parabolics and invariants
  • 09Diffeomorphisms and the topology of positive scalar curvature
  • 10Duality and the coarse assembly map
  • 11Topological and equivariant rigidity in the presence of lower curvature bounds
  • 12Anosov representations and Margulis spacetimes
  • 13Analysis on spaces with fibred cusps
  • 14Boundaries of acylindrically hyperbolic groups and applications
  • 15Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds
  • 16Minimizer of the Willmore energy with prescribed rectangular conformal class
  • 17Existence, regularity and uniqueness results of geometric variational problems
  • 18Analytic L2-invariants of non-positively curved spaces
  • 19Boundaries, Greens formulae and harmonic functions for graphs and Dirichlet spaces
  • 20Compactifications and Local-to-Global Structure for Bruhat-Tits Buildings
  • 21Stability and instability of Einstein manifolds with prescribed asymptotic geometry
  • 22Willmore functional and Lagrangian surfaces
  • 23Spectral geometry, index theory and geometric flows on singular spaces
  • 24Minimal surfaces in metric spaces
  • 25The Willmore energy of degenerating surfaces and singularities of geometric flows
  • 26Projective surfaces, Segre structures and the Hitchin component for PSL(n,R)
  • 27Invariants and boundaries of spaces
  • 28Rigidity, deformations and limits of maximal representations
  • 29Curvature flows without singularities
  • 30Nonlinear evolution equations on singular manifolds
  • 31Solutions to Ricci flow whose scalar curvature is bounded in Lp.
  • 32Asymptotic geometry of the Higgs bundle moduli space
  • 33Gerbes in renormalization and quantization of infinite-dimensional moduli spaces
  • 34Asymptotic geometry of sofic groups and manifolds II
  • 35Geometric operators on singular domains
  • 36Cohomogeneity, curvature, cohomology
  • 37Boundary value problems and index theory on Riemannian and Lorentzian manifolds
  • 38Geometry of surface homeomorphism groups
  • 39Geometric invariants of discrete and locally compact groups
  • 40Construction of Riemannian manifolds with scalar curvature constraints and applications to general relativity
  • 41Geometrically defined asymptotic coordinates in general relativity
  • 42Spin obstructions to metrics of positive scalar curvature on nonspin manifolds
  • 43Singular Riemannian foliations and collapse
  • 44Actions of mapping class groups and their subgroups
  • 45Macroscopic invariants of manifolds
  • 46Ricci flows for non-smooth spaces, monotonic quantities, and rigidity
  • 47Self-adjointness of Laplace and Dirac operators on Lorentzian manifolds foliated by noncompact hypersurfaces
  • 48Profinite and RFRS groups
  • 49Analysis on spaces with fibred cusps II
  • 50Probabilistic and spectral properties of weighted Riemannian manifolds with Kato bounded Bakry-Emery-Ricci curvature
  • 51The geometry of locally symmetric manifolds via natural maps
  • 52Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds II
  • 53Gauge-theoretic methods in the geometry of G2-manifolds
  • 54Cohomology of symmetric spaces as seen from infinity
  • 55New hyperkähler spaces from the the self-duality equations
  • 56Large genus limit of energy minimizing compact minimal surfaces in the 3-sphere
  • 57Existence, regularity and uniqueness results of geometric variational problems II
  • 58Profinite perspectives on l2-cohomology
  • 59Laplacians, metrics and boundaries of simplicial complexes and Dirichlet spaces
  • 60Property (T)
  • 61At infinity of symmetric spaces
  • 62A unified approach to Euclidean buildings and symmetric spaces of noncompact type
  • 63Uniqueness in mean curvature flow
  • 64Spectral geometry, index theory and geometric flows on singular spaces II
  • 65Resonances for non-compact locally symmetric spaces
  • 66Minimal surfaces in metric spaces II
  • 67Asymptotics of singularities and deformations
  • 68Minimal Lagrangian connections and related structures
  • 69Wall-crossing and hyperkähler geometry of moduli spaces
  • 70Spectral theory with non-unitary twists
  • 71Rigidity, deformations and limits of maximal representations II
  • 72Limits of invariants of translation surfaces
  • 73Geometric Chern characters in p-adic equivariant K-theory
  • 74Rigidity, stability and deformations in nearly parallel G2-geometry
  • 75Solutions to Ricci flow whose scalar curvature is bounded in L^p II
  • 76Singularities of the Lagrangian mean curvature flow
  • 77Asymptotic geometry of the Higgs bundle moduli space II
  • 78Duality and the coarse assembly map II
  • 79Alexandrov geometry in the light of symmetry and topology
  • 80Nonlocal boundary problems: Index theory and semiclassical asymptotics

We consider the heat equation associated to Schrödinger operators acting on vector bundles on asymptotically locally Euclidean (ALE) manifolds. Novel LpLq decay estimates are established, allowing the Schrödinger operator to have a non-trivial L2-kernel. We also prove new decay estimates for spatial derivatives of arbitrary order, in a general geometric setting. Our main motivation is the application to stability of non-linear geometric equations, primarily Ricci flow, which will be presented in a companion paper. The arguments in this paper use that many geometric Schrödinger operators can be written as the square of Dirac type operators. By a remarkable result of Wang, this is even true for the Lichnerowicz Laplacian, under the assumption of a parallel spinor. Our analysis is based on a novel combination of the Fredholm theory for Dirac type operators on ALE manifolds and recent advances in the study of the heat kernel on non-compact manifolds.

 

Related project(s):
21Stability and instability of Einstein manifolds with prescribed asymptotic geometry

We present an Eilenberg--Steenrod-like axiomatic framework for equivariant coarse homology and cohomology theories. We also discuss a general construction of such coarse theories from topological ones and the associated transgression maps. A large part of this paper is devoted to showing how some well-established coarse (co-)homology theories with already existing or newly introduced equivariance fit into this setup.

Furthermore, a new and more flexible notion of coarse homotopy is given which is more in the spirit of topological homotopies. Some, but not all, coarse (co-)homology theories are even invariant under these new homotopies. They also led us to a meaningful concept of topological actions of locally compact groups on coarse spaces.

 

Related project(s):
10Duality and the coarse assembly map

We study $\ell^2$ Betti numbers, coherence, and virtual fibring of random groups in the few-relator model. In particular, random groups with negative Euler characteristic are coherent, have $\ell^2$ homology concentrated in dimension 1, and embed in a virtually free-by-cyclic group with high probability. Similar results are shown with positive probability in the zero Euler characteristic case.

 

Related project(s):
8Parabolics and invariants

We show that a finitely generated residually finite rationally solvable (or RFRS) group G is virtually fibred, in the sense that it admits a virtual surjection to $\mathbb Z$ with a finitely generated kernel, if and only if the first $L^2$-Betti number of G vanishes. This generalises (and gives a new proof of) the analogous result of Ian Agol for fundamental groups of 3-manifolds.

 

Related project(s):
8Parabolics and invariants

We study the Newton polytopes of determinants of square matrices defined over rings of twisted Laurent polynomials. We prove that such Newton polytopes are single polytopes (rather than formal differences of two polytopes); this result can be seen as analogous to the fact that determinants of matrices over commutative Laurent polynomial rings are themselves polynomials, rather than rational functions. We also exhibit a relationship between the Newton polytopes and invertibility of the matrices over Novikov rings, thus establishing a connection with the invariants of Bieri-Neumann-Strebel (BNS) via a theorem of Sikorav.

We offer several applications: we reprove Thurston's theorem on the existence of a polytope controlling the BNS invariants of a 3-manifold group; we extend this result to free-by-cyclic groups, and the more general descending HNN extensions of free groups. We also show that the BNS invariants of Poincare duality groups of type F in dimension 3 and groups of deficiency one are determined by a polytope, when the groups are assumed to be agrarian, that is their integral group rings embed in skew-fields. The latter result partially confirms a conjecture of Friedl.

We also deduce the vanishing of the Newton polytopes associated to elements of the Whitehead groups of many groups satisfying the Atiyah conjecture. We use this to show that the L2-torsion polytope of Friedl-Lueck is invariant under homotopy. We prove the vanishing of this polytope in the presence of amenability, thus proving a conjecture of Friedl-Lueck-Tillmann.

 

Related project(s):
8Parabolics and invariants

For every Lie group G, we compute the maximal n such that an n-fold product of nonabelian free groups embeds into G.

 

Related project(s):
18Analytic L2-invariants of non-positively curved spaces

This paper relates different approaches to the asymptotic geometry of the

Hitchin moduli space of SL(2,C) Higgs bundles on a closed Riemann surface and,

via the nonabelian Hodge theorem, the character variety of SL(2,C)

representations of a surface group. Specifically, we find an asymptotic

correspondence between the analytically defined limiting configuration of a

sequence of solutions to the self-duality equations constructed by

Mazzeo-Swoboda-Weiss-Witt, and the geometric topological shear-bend parameters

of equivariant pleated surfaces due to Bonahon and Thurston. The geometric link

comes from a study of high energy harmonic maps. As a consequence we prove: (1)

the local invariance of the partial compactification of the moduli space by

limiting configurations; (2) a refinement of the harmonic maps characterization

of the Morgan-Shalen compactification of the character variety; and (3) a

comparison between the family of complex projective structures defined by a

quadratic differential and the realizations of the corresponding flat

connections as Higgs bundles, as well as a determination of the asymptotic

shear-bend cocycle of Thurston's pleated surface.

 

Related project(s):
27Invariants and boundaries of spaces32Asymptotic geometry of the Higgs bundle moduli space

Our main result gives an improved bound on the filling areas of closed curves in Banach spaces which are not closed geodesics. As applications we show rigidity of Pu's classical systolic inequality and investigate the isoperimetric constants of normed spaces. The latter has further applications concerning the regularity of minimal surfaces in Finsler manifolds.

 

Related project(s):
24Minimal surfaces in metric spaces

Let $X$ be a Banach space or more generally a complete metric space admitting a conical geodesic bicombing. We prove that every closed $L$-Lipschitz curve $\gamma:S^1\rightarrow X$ may be extended to an $L$-Lipschitz map defined on the hemisphere $f:H^2\rightarrow X$. This implies that $X$ satisfies a quadratic isoperimetric inequality (for curves) with constant $\frac{1}{2\pi}$. We discuss how this fact controls the regularity of minimal discs in Finsler manifolds when applied to the work of Alexander Lytchak and Stefan Wenger.

 

JournalTrans. Amer. Math. Soc.
Volume373
Pages1577-1596
Link to preprint version
Link to published version

Related project(s):
24Minimal surfaces in metric spaces

We investigate rigidity properties of S-arithmetic Kac-Moody groups in characteristic 0.

 

JournalJ. Lie Theory
Volume30
Pages9-23
Link to preprint version
Link to published version

Related project(s):
8Parabolics and invariants

When trying to cast the free fermion in the framework of functorial field theory, its chiral anomaly manifests in the fact that it assigns the determinant of the Dirac operator to a top-dimensional closed spin manifold, which is not a number as expected, but an element of a complex line. In functorial field theory language, this means that the theory is twisted, which gives rise to an anomaly theory. In this paper, we give a detailed construction of this anomaly theory, as a functor that sends manifolds to infinite-dimensional Clifford algebras and bordisms to bimodules.

 

JournalAnnales Henri Poincare
PublisherSpringer
Link to preprint version
Link to published version

Related project(s):
5Index theory on Lorentzian manifolds

Let (Mi,gi)i∈N be a sequence of spin manifolds with uniform bounded curvature and diameter that converges to a lower dimensional Riemannian manifold (B,h) in the Gromov-Hausdorff topology. Lott showed that the spectrum converges to the spectrum of a certain first order elliptic differential operator D on B. In this article we give an explicit description of D. We conclude that D is self-adjoint and characterize the special case where D is the Dirac operator on B.

 

JournalAnnals of Global Analysis and Geometry
PublisherSpringer
Volume57
Pages121-151
Link to preprint version
Link to published version

Related project(s):
5Index theory on Lorentzian manifolds

In this paper, we mainly consider the relative isoperimetric inequalities for minimal submanifolds in Rn+m. We first provide, following Cabré \cite{Cabre2008}, an ABP proof of the relative isoperimetric inequality proved in Choe-Ghomi-Ritoré \cite{CGR07}, by generalizing ideas of restricted normal cones given in \cite{CGR06}. Then we prove a relative isoperimetric inequalities for minimal submanifolds in Rn+m, which is optimal when the codimension m≤2. In other words we obtain a relative version of isoperimetric inequalities for minimal submanifolds proved recently by Brendle \cite{Brendle2019}. When the codimension m≤2, our result gives an affirmative answer to an open problem proposed by Choe in \cite{Choe2005}, Open Problem 12.6. As another application we prove an optimal logarithmic Sobolev inequality for free boundary submanifolds in the Euclidean space following a trick of Brendle in \cite{Brendle2019b}.

 

Related project(s):
22Willmore functional and Lagrangian surfaces

In this work we describe horofunction compactifications of metric spaces and finite dimensional real vector spaces through asymmetric metrics and asymmetric polyhedral norms by means of nonstandard methods, that is, ultrapowers of the spaces at hand. The compactifications of the vector spaces carry the structure of stratified spaces with the strata indexed by dual faces of the polyhedral unit ball. Explicit neighborhood bases and descriptions of the horofunctions are provided.

 

Related project(s):
20Compactifications and Local-to-Global Structure for Bruhat-Tits Buildings

In this paper we consider a Ricci de Turck flow of spaces with isolated conical singularities, which preserves the conical structure along the flow. We establish that a given initial regularity of Ricci curvature is preserved along the flow. Moreover under additional assumptions, positivity of scalar curvature is preserved under such a flow, mirroring the standard property of Ricci flow on compact manifolds. The analytic difficulty is the a priori low regularity of scalar curvature at the conical tip along the flow, so that the maximum principle does not apply. We view this work as a first step toward studying positivity of the curvature operator along the singular Ricci flow.

 

Related project(s):
21Stability and instability of Einstein manifolds with prescribed asymptotic geometry23Spectral geometry, index theory and geometric flows on singular spaces

Given a generic stable strongly parabolic $SL(2,\mathbb{C})$-Higgs bundle

$(\mathcal{E}, \varphi)$, we describe the family of harmonic metrics $h_t$ for

the ray of Higgs bundles $(\mathcal{E}, t \varphi)$ for $t\gg0$ by perturbing

from an explicitly constructed family of approximate solutions

$h_t^{\mathrm{app}}$. We then describe the natural hyperK\"ahler metric on

$\mathcal{M}$ by comparing it to a simpler "semi-flat" hyperK\"ahler metric. We

prove that $g_{L^2} - g_{\mathrm{sf}} = O(\mathrm{e}^{-\gamma t})$ along a

generic ray, proving a version of Gaiotto-Moore-Neitzke's conjecture.

  Our results extend to weakly parabolic $SL(2,\mathbb{C})$-Higgs bundles as

well.

  In the case of the four-puncture sphere, we describe the moduli space and

metric more explicitly. In this case, we prove that the hyperk\"ahler metric is

ALG and show that the rate of exponential decay is the conjectured optimal one,

$\gamma=4L$, where $L$ is the length of the shortest geodesic on the base curve

measured in the singular flat metric $|\mathrm{det}\, \varphi|$.

 

Related project(s):
32Asymptotic geometry of the Higgs bundle moduli space

Let X be a compact Calabi-Yau 3-fold, and write \(\mathcal{M}, \overline{\mathcal{M}}\) for the moduli stacks of objects in coh(X) and the derived category D^b coh(X). There are natural line bundles \(K_{\mathcal{M}} \to \mathcal{M}, K_{\overline{\mathcal{M}}} \to \overline{\mathcal{M}}\) analogues of canonical bundles. Orientation data is an isomorphism class of square root line bundles \(K_{\mathcal{M}}^{1/2}, K_{\overline{\mathcal{M}}}^{1/2}\), satisfying a compatibility condition on the stack of short exact sequences. It was introduced by Kontsevich and Soibelman in their theory of motivic Donaldson-Thomas invariants, and is also important in categorifying Donaldson-Thomas theory using perverse sheaves. We show that natural orientation data can be constructed for all compact Calabi-Yau 3-folds X, and also for compactly-supported coherent sheaves and perfect complexes on noncompact Calabi-Yau 3-folds X that admit a spin smooth projective compactification.

 

Related project(s):
33Gerbes in renormalization and quantization of infinite-dimensional moduli spaces

We establish a one-to-one correspondence between Finsler structures on the \(2\)-sphere with constant curvature \(1\) and all geodesics closed on the one hand, and Weyl connections on certain spindle orbifolds whose symmetric Ricci curvature is positive definite and all of whose geodesics closed on the other hand. As an application of our duality result, we show that suitable holomorphic deformations of the Veronese embedding $$\mathbb{CP}(a_1,a_2)\to \mathbb{CP}(a_1,(a_1+a_2)/2,a_2)$$ of weighted projective spaces provide examples of Finsler \(2\)-spheres of constant curvature and all geodesics closed.

 

JournalJournal of the Institute of Mathematics of Jussieu
PublisherCambridge University Press
Link to preprint version
Link to published version

Related project(s):
26Projective surfaces, Segre structures and the Hitchin component for PSL(n,R)

We determine the fundamental groups of symmetrizable algebraically simply connected split real Kac-Moody groups endowed with the Kac-Peterson topology. In analogy to the finite-dimensional situation, the Iwasawa decomposition G=KAU provides a weak homotopy equivalence between K and G, implying π1(G)=π1(K). It thus suffices to determine π1(K) which we achieve by investigating the fundamental groups of generalized flag varieties. Our results apply in all cases in which the Bruhat decomposition of the generalized flag variety is a CW decomposition − in particular, we cover the complete symmetrizable situation; the result concerning the structure of π1(K) more generally also holds in the non-symmetrizable two-spherical situation.

 

Related project(s):
61At infinity of symmetric spaces

We prove that the sign of the Euler characteristic of arithmetic groups with CSP is determined by the profinite completion.  In contrast, we construct examples showing that this is not true for the Euler characteristic itself and that the sign of the Euler characteristic is not profinite among general residually finite groups of type F.  Our methods imply similar results for L2-torsion as well as a strong profiniteness statement for Novikov--Shubin invariants.

Related project(s):
18Analytic L2-invariants of non-positively curved spaces58Profinite perspectives on l2-cohomology

This website uses cookies

By using this page, browser cookies are set. Read more ›