Publications

Publications of SPP2026

On this site you find preprints and publications produced within the projects and with the support of the DFG priority programme „Geometry at Infinity“.

all projects
  • all projects
  • 01Hitchin components for orbifolds
  • 02Asymptotic geometry of sofic groups and manifolds
  • 03Geometric operators on a class of manifolds with bounded geometry
  • 04Secondary invariants for foliations
  • 05Index theory on Lorentzian manifolds
  • 06Spectral Analysis of Sub-Riemannian Structures
  • 07Asymptotic geometry of moduli spaces of curves
  • 08Parabolics and invariants
  • 09Diffeomorphisms and the topology of positive scalar curvature
  • 10Duality and the coarse assembly map
  • 11Topological and equivariant rigidity in the presence of lower curvature bounds
  • 12Anosov representations and Margulis spacetimes
  • 13Analysis on spaces with fibred cusps
  • 14Boundaries of acylindrically hyperbolic groups and applications
  • 15Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds
  • 16Minimizer of the Willmore energy with prescribed rectangular conformal class
  • 17Existence, regularity and uniqueness results of geometric variational problems
  • 18Analytic L2-invariants of non-positively curved spaces
  • 19Boundaries, Greens formulae and harmonic functions for graphs and Dirichlet spaces
  • 20Compactifications and Local-to-Global Structure for Bruhat-Tits Buildings
  • 21Stability and instability of Einstein manifolds with prescribed asymptotic geometry
  • 22Willmore functional and Lagrangian surfaces
  • 23Spectral geometry, index theory and geometric flows on singular spaces
  • 24Minimal surfaces in metric spaces
  • 25The Willmore energy of degenerating surfaces and singularities of geometric flows
  • 26Projective surfaces, Segre structures and the Hitchin component for PSL(n,R)
  • 27Invariants and boundaries of spaces
  • 28Rigidity, deformations and limits of maximal representations
  • 29Curvature flows without singularities
  • 30Nonlinear evolution equations on singular manifolds
  • 31Solutions to Ricci flow whose scalar curvature is bounded in Lp.
  • 32Asymptotic geometry of the Higgs bundle moduli space
  • 33Gerbes in renormalization and quantization of infinite-dimensional moduli spaces
  • 34Asymptotic geometry of sofic groups and manifolds II
  • 35Geometric operators on singular domains
  • 36Cohomogeneity, curvature, cohomology
  • 37Boundary value problems and index theory on Riemannian and Lorentzian manifolds
  • 38Geometry of surface homeomorphism groups
  • 39Geometric invariants of discrete and locally compact groups
  • 40Construction of Riemannian manifolds with scalar curvature constraints and applications to general relativity
  • 41Geometrically defined asymptotic coordinates in general relativity
  • 42Spin obstructions to metrics of positive scalar curvature on nonspin manifolds
  • 43Singular Riemannian foliations and collapse
  • 44Actions of mapping class groups and their subgroups
  • 45Macroscopic invariants of manifolds
  • 46Ricci flows for non-smooth spaces, monotonic quantities, and rigidity
  • 47Self-adjointness of Laplace and Dirac operators on Lorentzian manifolds foliated by noncompact hypersurfaces
  • 48Profinite and RFRS groups
  • 49Analysis on spaces with fibred cusps II
  • 50Probabilistic and spectral properties of weighted Riemannian manifolds with Kato bounded Bakry-Emery-Ricci curvature
  • 51The geometry of locally symmetric manifolds via natural maps
  • 52Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds II
  • 53Gauge-theoretic methods in the geometry of G2-manifolds
  • 54Cohomology of symmetric spaces as seen from infinity
  • 55New hyperkähler spaces from the the self-duality equations
  • 56Large genus limit of energy minimizing compact minimal surfaces in the 3-sphere
  • 57Existence, regularity and uniqueness results of geometric variational problems II
  • 58Profinite perspectives on l2-cohomology
  • 59Laplacians, metrics and boundaries of simplicial complexes and Dirichlet spaces
  • 60Property (T)
  • 61At infinity of symmetric spaces
  • 62A unified approach to Euclidean buildings and symmetric spaces of noncompact type
  • 63Uniqueness in mean curvature flow
  • 64Spectral geometry, index theory and geometric flows on singular spaces II
  • 65Resonances for non-compact locally symmetric spaces
  • 66Minimal surfaces in metric spaces II
  • 67Asymptotics of singularities and deformations
  • 68Minimal Lagrangian connections and related structures
  • 69Wall-crossing and hyperkähler geometry of moduli spaces
  • 70Spectral theory with non-unitary twists
  • 71Rigidity, deformations and limits of maximal representations II
  • 72Limits of invariants of translation surfaces
  • 73Geometric Chern characters in p-adic equivariant K-theory
  • 74Rigidity, stability and deformations in nearly parallel G2-geometry
  • 75Solutions to Ricci flow whose scalar curvature is bounded in L^p II
  • 76Singularities of the Lagrangian mean curvature flow
  • 77Asymptotic geometry of the Higgs bundle moduli space II
  • 78Duality and the coarse assembly map II
  • 79Alexandrov geometry in the light of symmetry and topology
  • 80Nonlocal boundary problems: Index theory and semiclassical asymptotics

The unit conjecture, commonly attributed to Kaplansky, predicts that if \(K\) is a field and \(G\) is a torsion-free group then the only units of the group ring \(K[G]\) are the trivial units, that is, the non-zero scalar multiples of group elements. We give a concrete counterexample to this conjecture; the group is virtually abelian and the field is order two.

 

Related project(s):
48Profinite and RFRS groups

For a countable group G we construct a small, idempotent complete, symmetric monoidal, stable ∞-category KK^G_sep whose homotopy category recovers the triangulated equivariant Kasparov category of separable G-C*-algebras, and exhibit its universal property. Likewise, we consider an associated presentably symmetric monoidal, stable ∞-category KK^G which receives a symmetric monoidal functor kk^G from possibly non-separable G-C*-algebras and discuss its universal property. In addition to the symmetric monoidal structures, we construct various change-of-group functors relating these KK-categories for varying G. We use this to define and establish key properties of a (spectrum valued) equivariant, locally finite K-homology theory on proper and locally compact G-topological spaces, allowing for coefficients in arbitrary G-C*-algebras. Finally, we extend the functor kk^G from G-C*-algebras to G-C*-categories. These constructions are key in a companion paper about a form of equivariant Paschke duality and assembly maps.

 

Related project(s):
45Macroscopic invariants of manifolds

We prove that any length metric space homeomorphic to a surface may be decomposed into non-overlapping convex triangles of arbitrarily small diameter. This generalizes a previous result of Alexandrov--Zalgaller for surfaces of bounded curvature.

 

Related project(s):
24Minimal surfaces in metric spaces

Based on  Morse theory for the energy functional on path spaces we develop a deformation theory for mapping spaces of  spheres into orthogonal groups. This is used to show that these mapping spaces are weakly homotopy equivalent, in a stable range, to mapping spaces associated to orthogonal Clifford representations. Given an oriented Euclidean bundle $V \to X$ of rank divisible by four over a finite complex $X$ we derive a stable decomposition result for vector bundles over  the sphere bundle $\mathbb{S}( \mathbb{R} \oplus V)$  in terms of vector bundles and Clifford module bundles over $X$. After passing to topological K-theory these results imply classical Bott-Thom isomorphism theorems.

 

 

 

JournalSão Paulo Journal of Mathematical Sciences (to appear)
Link to preprint version

Related project(s):
15Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds52Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds II

We investigate the class of geodesic metric discs satisfying a uniform quadratic isoperimetric inequality and uniform bounds on the length of the boundary circle. We show that the closure of this class as a subset of Gromov-Hausdorff space is intimately related to the class of geodesic metric disc retracts satisfying comparable bounds. This kind of discs naturally come up in the context of the solution of Plateau's problem in metric spaces by Lytchak and Wenger as generalizations of minimal surfaces.

 

JournalGeom. Dedicata
Volume210
Pages151-164
Link to preprint version
Link to published version

Related project(s):
24Minimal surfaces in metric spaces

We show that a properly convex projective structure \(\mathfrak{p}\) on a closed oriented surface of negative Euler characteristic arises from a Weyl connection if and only if \(\mathfrak{p}\) is hyperbolic. We phrase the problem as a non-linear PDE for a Beltrami differential by using that \(\mathfrak{p}\) admits a compatible Weyl connection if and only if a certain holomorphic curve exists. Turning this non-linear PDE into a transport equation, we obtain our result by applying methods from geometric inverse problems. In particular, we use an extension of a remarkable \(L^2\)-energy identity known as Pestov's identity to prove a vanishing theorem for the relevant transport equation.

 

JournalAnalysis & PDE
PublisherMathematical Sciences Publishers
Volume13
Pages1073--1097
Link to preprint version
Link to published version

Related project(s):
26Projective surfaces, Segre structures and the Hitchin component for PSL(n,R)

Let M be a simply connected spin manifold of dimension at least six which admits a metric of positive scalar curvature. We show that the observer moduli space of positive scalar curvature metrics on M has non-trivial higher homotopy groups.

Moreover, denote by \mathcal{M}^+_0(M) the moduli space of positive scalar cuvature metrics on M associated to the group of orientation-preserving diffeomorphisms of M. We show that if M belongs to a certain class of manifolds which includes (2n−2)-connected (4n−2)-dimensional manifolds, then the fundamental group of \mathcal{M}^+_0(M) is non-trivial.

 

JournalInt. Math. Res. Not. IMRN
Link to preprint version
Link to published version

Related project(s):
15Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds

The main result of this paper is that when M_0, M_1 are two simply connected spin manifolds of the same dimension d≥5 which both admit a metric of positive scalar curvature, the spaces \mathcal{M}^+(M0) and \mathcal{M}^+(M_1) of such metrics are homotopy equivalent. This supersedes a previous result of Chernysh and Walsh which gives the same conclusion when M_0 and M_1 are also spin cobordant.

We also prove an analogous result for simply connected manifolds which do not admit a spin structure; we need to assume that d≠8 in that case.

 

Related project(s):
15Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds

By arithmeticity and superrigidity, a commensurability class of lattices in a higher rank Lie group is defined by a unique algebraic group over a unique number subfield of \(\mathbb{R}\) or \(\mathbb{C}\). We prove an adelic version of superrigidity which implies that two such commensurability classes define the same profinite commensurability class if and only if the algebraic groups are adelically isomorphic. We discuss noteworthy consequences on profinite rigidity questions.

 

Related project(s):
58Profinite perspectives on l2-cohomology

We investigate which higher rank simple Lie groups admit profinitely but not abstractly commensurable lattices.  We show that no such examples exist for the complex forms of type \(E_8\), \(F_4\), and \(G_2\).  In contrast, there are arbitrarily many such examples in all other higher rank Lie groups, except possibly \(\mathrm{SL}_{2n+1}(\mathbb{R})\), \(\mathrm{SL}_{2n+1}(\mathbb{C})\), \(\mathrm{SL}_n(\mathbb{H})\), or groups of type~\(E_6\).

 

Related project(s):
58Profinite perspectives on l2-cohomology

We define and study generalizations of simplicial volume over arbitrary seminormed rings with a focus on p-adic simplicial volumes. We investigate the dependence on the prime and establish homology bounds in terms of p-adic simplicial volumes. As the main examples, we compute the weightless and p-adic simplicial volumes of surfaces. This is based on an alternative way to calculate classical simplicial volume of surfaces without hyperbolic straightening and shows that surfaces satisfy mod p and p-adic approximation of simplicial volume.

 

Related project(s):
58Profinite perspectives on l2-cohomology

We compute the spectra of the Laplace-Beltrami operator, the connection Laplacian on 1-forms and the Einstein operator on symmetric 2-tensors on the sine-cone over a positive Einstein manifold $(M,g)$. We conclude under which conditions on $(M,g)$, the sine-cone is dynamically stable under the singular Ricci-de Turck flow and rigid as a singular Einstein manifold

 

Related project(s):
21Stability and instability of Einstein manifolds with prescribed asymptotic geometry64Spectral geometry, index theory and geometric flows on singular spaces II

We prove stability of integrable ALE manifolds with a parallel spinor under Ricci flow, given an initial metric which is close in $L^p\cap L^{\infty}$, for any $p\in (1,n)$, where $n$ is the dimension of the manifold. In particular, our result applies to all known examples of 4-dimensional gravitational instantons. Our decay rates are strong enough to prove positive scalar curvature rigidity in $L^p$, for each $p\in  [1,\frac{n}{n-2})$, generalizing a result by Appleton.

 

Related project(s):
21Stability and instability of Einstein manifolds with prescribed asymptotic geometry

A geodesic γ in an abstract reflection space X (in the sense of Loos, without any assumption of differential structure) is known to canonically admits an action of a 1-parameter subgroup of the group of transvections of X. In this article, we prove an analog of this result stating that, if X contains an embedded hyperbolic plane, then this yields a canonical action of a subgroup of the transvection group of X isomorphic to a perfect central extension of PSL(2,R). This result can be further extended to arbitrary Riemannian symmetric spaces of non-compact type embedded in X and can be used to prove that a Riemannian symmetric space and, more generally, the Kac-Moody symmetric space G/K for an algebraically simply connected two-spherical Kac-Moody group G satisfies a universal property similar to the universal property that the group G satisfies itself.

 

JournalAdv. Geometry
Volume20
Pages499-506
Link to preprint version
Link to published version

Related project(s):
61At infinity of symmetric spaces

In the present article we introduce and study a class of topological reflection spaces that we call Kac-Moody symmetric spaces. These generalize Riemannian symmetric spaces of non-compact type. We observe that in a non-spherical Kac-Moody symmetric space there exist pairs of points that do not lie on a common geodesic; however, any two points can be connected by a chain of geodesic segments. We moreover classify maximal flats in Kac-Moody symmetric spaces and study their intersection patterns, leading to a classification of global and local automorphisms. Unlike Riemannian symmetric spaces, non-spherical non-affine irreducible Kac-Moody symmetric spaces also admit an invariant causal structure. For causal and anti-causal geodesic rays with respect to this structure we find a notion of asymptoticity, which allows us to define a future and past boundary of such Kac-Moody symmetric space. We show that these boundaries carry a natural polyhedral structure and are cellularly isomorphic to the halves of the geometric realization of the twin buildings of the underlying split real Kac-Moody group. We also show that every automorphism of the symmetric space is uniquely determined by the induced cellular automorphism of the future and past boundary. The invariant causal structure on a non-spherical non-affine irreducible Kac-Moody symmetric space gives rise to an invariant pre-order on the underlying space, and thus to a subsemigroup of the Kac-Moody group. We conclude that while in some aspects Kac-Moody symmetric spaces closely resemble Riemannian symmetric spaces, in other aspects they behave similarly to ordered affine hovels, their non-Archimedean cousins.

 

JournalMünster J. Math.
Volume13
Pages1-114
Link to preprint version
Link to published version

Related project(s):
61At infinity of symmetric spaces

A Calder\'on projector for an elliptic operator $P$ on a manifold with boundary $X$ is a projection from general boundary data to the set of boundary data of solutions $u$ of $Pu=0$. Seeley proved in 1966 that for compact $X$ and for $P$ uniformly elliptic up to the boundary there is a Calder\'on projector which is a pseudodifferential operator on $\partial X$. We generalize this result to the setting of fibred cusp operators, a class of elliptic operators on certain non-compact manifolds having a special fibred structure at infinity.

 

This applies, for example, to the Laplacian on certain locally symmetric spaces

 

or on particular singular spaces, such as a domain with cusp singularity or the complement of two touching smooth strictly convex domains in Euclidean space. Our main technical tool is the $\phi$-pseudodifferential calculus introduced by Mazzeo and Melrose.

 

 

 

In our presentation we provide a setting that may  be useful for doing analogous constructions for other types of singularities.

 

Related project(s):
13Analysis on spaces with fibred cusps49Analysis on spaces with fibred cusps II

We study the low energy resolvent of the Hodge Laplacian on a manifold  equipped with a fibred boundary metric. We determine the precise asymptotic behavior of the resolvent as a fibred boundary (aka $\phi$-) pseudodifferential operator when the resolvent parameter tends to zero.

 

This generalizes previous work by Guillarmou and Sher who considered asymptotically conic metrics, which correspond to the special case when the fibres are points. The new feature in the case of non-trivial fibres is that the resolvent has different asymptotic behavior on the subspace of forms that are fibrewise harmonic  and on its orthogonal complement. To deal with this, we introduce an appropriate 'split' pseudodifferential calculus, building on and extending work by Grieser and Hunsicker. Our work sets the basis for the discussion of spectral invariants on $\phi$-manifolds.

 

Related project(s):
13Analysis on spaces with fibred cusps23Spectral geometry, index theory and geometric flows on singular spaces49Analysis on spaces with fibred cusps II

We construct secondary cup and cap products on coarse (co-)homology theories from given cross and slant products. They are defined for coarse spaces relative to weak generalized controlled deformation retracts.

 

 

 

On ordinary coarse cohomology, our secondary cup product agrees with a secondary product defined by Roe. For coarsifications of topological coarse (co-)homology theories, our secondary cup and cap products correspond to the primary cup and cap products on Higson dominated coronas via transgression maps. And in the case of coarse $\mathrm{K}$-theory and -homology, the secondary products correspond to canonical primary products between the $\mathrm{K}$-theories of the stable Higson corona and the Roe algebra under assembly and co-assembly.

 

Related project(s):
10Duality and the coarse assembly map78Duality and the coarse assembly map II

We define a functional \({\cal J}(h)\) for the space of Hermitian metrics on an arbitrary Higgs bundle over a compact Kähler manifold, as a natural generalization of the mean curvature energy functional of Kobayashi for holomorphic vector bundles, and study some of its basic properties. We show that \({\cal J}(h)\) is bounded from below by a nonnegative constant depending on invariants of the Higgs bundle and the Kähler manifold, and that when achieved, its absolute minima are Hermite-Yang-Mills metrics. We derive a formula relating \({\cal J}(h)\) and another functional \({\cal I}(h)\), closely related to the Yang-Mills-Higgs functional, which can be thought of as an extension of a formula of Kobayashi for holomorphic vector bundles to the Higgs bundles setting. Finally, using 1-parameter families in the space of Hermitian metrics on a Higgs bundle, we compute the first variation of \({\cal J}(h)\), which is expressed as a certain \(L^{2}\)-Hermitian inner product. It follows that a Hermitian metric on a Higgs bundle is a critical point of \({\cal J}(h)\) if and only if the corresponding Hitchin-Simpson mean curvature is parallel with respect to the Hitchin-Simpson connection.

 

JournalInternational Journal of Geometric Methods in Modern Physics
PublisherWorld Scientific
Volume17(13)
Lineart. no. 2050200
Link to preprint version
Link to published version

Related project(s):
32Asymptotic geometry of the Higgs bundle moduli space

We construct explicit geometric models for moduli spaces of stable parabolic Higgs bundles on the Riemann sphere, in the case of rank two, four marked points, any degree, and arbitrary weights. The construction mechanism relies on elementary geometric and combinatorial techniques, based on a detailed study of orbit stability of (in general non-reductive) bundle automorphism groups on carefully crafted spaces. These techniques are not exclusive to the case we examine. Therefore, this work elucidates a general approach to construct arbitrary moduli spaces of stable parabolic Higgs bundles in genus 0, which is encoded into the combinatorics of weight polytopes. Moreover, we present a comprehensive analysis of the geometric models' behavior under variation of weights and wall-crossing. This analysis is concentrated on their nilpotent cones, and is applicable to the study of the hyperkähler geometry of Hitchin metrics as gravitational instantons of ALG type.

 

Related project(s):
69Wall-crossing and hyperkähler geometry of moduli spaces

This website uses cookies

By using this page, browser cookies are set. Read more ›