## Publications of SPP2026

On this site you find preprints and publications produced within the projects and with the support of the DFG priority programme „Geometry at Infinity“.

In this article we study the stability problem for the Einstein metrics on

Sasaki Einstein and on complete nearly parallel G2 manifolds. In the Sasaki

case we show linear instability if the second Betti number is positive.

Similarly we prove that nearly parallel G2 manifolds with positive third

Betti number are linearly unstable. Moreover, we prove linear instability

for the Berger space SO(5)/SO(3)_irr which is a 7-dimensional homology

sphere with a proper nearly parallel G2 structure.

Journal | to appear in Int. J. Math. |

Link to preprint version |

**Related project(s):****74**Rigidity, stability and deformations in nearly parallel G2-geometry

In this article we study the stability problem for the Einstein-Hilbert functional on compact symmetric spaces following and completing the seminal work of Koiso on the subject. We classify in detail the irreducible representations of simple Lie algebras with Casimir eigenvalue less than the Casimir eigenvalue of the adjoint representation, and use this information to prove the stability of the Einstein metrics on both the quaternionic and Cayley projective plane. Moreover we prove that the Einstein metrics on quaternionic Grassmannians different from projective spaces are unstable.

Journal | J. Geom. Anal. (2022) 32:137 |

Link to preprint version |

**Related project(s):****74**Rigidity, stability and deformations in nearly parallel G2-geometry

We study the spectral properties of the Laplace operator associated to a hyperbolic surface in the presence of a unitary representation of the fundamental group. Following the approach by Guillopé and Zworski, we establish a factorization formula for the twisted scattering determinant and describe the behavior of the scattering matrix in a neighborhood of \(1/2\).

**Related project(s):****70**Spectral theory with non-unitary twists

We provide Fourier expansions of vector-valued eigenfunctions of the hyperbolic Laplacian that are twist-periodic in a horocycle direction. The twist may be given by any endomorphism of a finite-dimensional vector space; no assumptions on invertibility or unitarity are made. Examples of such eigenfunctions include vector-valued twisted automorphic forms of Fuchsian groups. We further provide a detailed description of the Fourier coefficients and explicitly identify each of their constituents, which intimately depend on the eigenvalues of the twisting endomorphism and the size of its Jordan blocks. In addition, we determine the growth properties of the Fourier coefficients.

**Related project(s):****70**Spectral theory with non-unitary twists

Using non-Abelian Hodge theory for parabolic Higgs bundles,

we construct infinitely many non-congruent hyperbolic affine spheres modeled on a thrice-punctured sphere with monodromy in ${\bf SL}_3(\Z)$. These give rise to non-isometric semi-flat Calabi--Yau metrics on special Lagrangian torus bundles over an open ball in $\R^{3}$ with a Y-vertex deleted, thereby answering a question raised by Loftin, Yau, and Zaslow.

**Related project(s):****55**New hyperkähler spaces from the the self-duality equations

The Lawson surfaces $\xi_{1,g}$ of genus $g$ are constructed by rotating and reflecting the Plateau solution $f_t$ with respect to a particular geodesic $4$-gon $\Gamma_t$ along its boundary, where $t= \tfrac{1}{2g+2}$ is an angle of $\Gamma_t$. In this paper we combine the existence and regularity of the Plateau solution $f_t$ in $t \in (0, \tfrac{1}{4})$ with topological information about the moduli space of Fuchsian systems on the 4-puncture sphere to obtain existence of a Fuchsian DPW potential $\eta_t$ for every $f_t$ with $t\in(0, \tfrac{1}{4}]$. Moreover, the coefficients of $\eta_t$ are shown to depend real analytically on $t$. This implies that the Taylor approximation of the DPW potential $\eta_t$ and of the area obtained at $t=0$ found in \cite{HHT2} determines these quantities for all $\xi_{1,g}$. In particular, this leads to an algorithm to conformally parametrize all Lawson surfaces $\xi_{1,g}$.

**Related project(s):****55**New hyperkähler spaces from the the self-duality equations**56**Large genus limit of energy minimizing compact minimal surfaces in the 3-sphere

Journal | Invent. math. |

Publisher | Springer |

Link to published version |

**Related project(s):****65**Resonances for non-compact locally symmetric spaces

We establish conditions under which lattices in certain simple Lie groups are profinitely solitary in the absolute sense, so that the commensurability class of the profinite completion determines the commensurability class of the group among finitely generated residually finite groups. While cocompact lattices are typically not absolutely solitary, we show that noncocompact lattices in Sp(n,R), G2(2), E8(C), F4(C), and G2(C) are absolutely solitary if a well-known conjecture on Grothendieck rigidity is true.

**Related project(s):****58**Profinite perspectives on l2-cohomology

This article presents a method for proving upper bounds for the first \(\ell^2\)-Betti number of groups using only the geometry of the Cayley graph. As an application we prove that Burnside groups of large prime exponent have vanishing first \(\ell^2\)-Betti number.

Our approach extends to generalizations of \(\ell^2\)-Betti numbers, that are defined using characters. We illustrate this flexibility by generalizing results of Thom-Peterson on q-normal subgroups to this setting.

**Related project(s):****58**Profinite perspectives on l2-cohomology

The present book deals with the spectral geometry of infinite graphs. This topic involves the interplay of three different subjects: geometry, the spectral theory of Laplacians and the heat flow of the underlying graph. These three subjects are brought together under the unifying perspective of Dirichlet forms. The spectral geometry of manifolds is a well-established field of mathematics. On manifolds, the focus is on how Riemannian geometry, the spectral theory of the Laplace–Beltrami operator, Brownian motion and heat evolution interact. In the last twenty years large parts of this theory have been subsumed within the framework of strongly local Dirichlet forms. Indeed, this point of view has proven extremely fruitful.

Publisher | Springer |

Book | Grundlehren der mathematischen Wissenschaften |

Volume | 358 |

Pages | 668 |

Link to preprint version | |

Link to published version |

**Related project(s):****59**Laplacians, metrics and boundaries of simplicial complexes and Dirichlet spaces

We study planar graphs with large negative curvature outside of a finite set and the spectral theory of Schrödinger operators on these graphs. We obtain estimates on the first and second order term of the eigenvalue asymptotics. Moreover, we prove a unique continuation result for eigenfunctions and decay properties of general eigenfunctions. The proofs rely on a detailed analysis of the geometry which employs a Copy-and-Paste procedure based on the Gauß-Bonnet theorem.

**Related project(s):****59**Laplacians, metrics and boundaries of simplicial complexes and Dirichlet spaces

In this article we prove upper bounds for the k-th Laplace eigenvalues below the essential spectrum for strictly negatively curved Cartan–Hadamard manifolds. Our bound is given in terms of *k^*2 and specific geometric data of the manifold. This applies also to the particular case of non‐compact manifolds whose sectional curvature tends to minus infinity, where no essential spectrum is present due to a theorem of Donnelly/Li. The result stands in clear contrast to Laplacians on graphs where such a bound fails to be true in general.

Journal | Mathematische Nachrichten |

Publisher | Wiley |

Volume | 294 |

Pages | 1134-1139 |

Link to preprint version | |

Link to published version |

**Related project(s):****59**Laplacians, metrics and boundaries of simplicial complexes and Dirichlet spaces

We construct secondary cup and cap products on coarse (co-)homology theories from given cross and slant products. They are defined for coarse spaces relative to weak generalized controlled deformation retracts.

On ordinary coarse cohomology, our secondary cup product agrees with a secondary product defined by Roe. For coarsifications of topological coarse (co-)homology theories, our secondary cup and cap products correspond to the primary cup and cap products on Higson dominated coronas via transgression maps. And in the case of coarse $\mathrm{K}$-theory and -homology, the secondary products correspond to canonical primary products between the $\mathrm{K}$-theories of the stable Higson corona and the Roe algebra under assembly and co-assembly.

Journal | Research in the Mathematical Sciences |

Volume | 8, Article number: 36 |

Pages | 64p |

Link to preprint version | |

Link to published version |

**Related project(s):****10**Duality and the coarse assembly map**78**Duality and the coarse assembly map II

We construct a slant product on the analytic structure group of Higson and Roe and the K-theory of the stable Higson corona of Emerson and Meyer, which is the domain of the co-assembly map. In fact, we obtain such products simultaneously on the entire Higson-Roe sequence. The existence of these products implies injectivity results for external product maps on each term of the Higson-Roe sequence. Our results apply in particular to taking products with aspherical manifolds whose fundamental groups admit coarse embeddings into Hilbert space. To conceptualize the general class of manifolds where this method applies, we introduce the notion of Higson-essentialness. A complete spin-c manifold is Higson-essential if its fundamental class is detected by the stable Higson corona via the co-assembly map. We prove that coarsely hypereuclidean manifolds are Higson-essential. Finally, we draw conclusions for positive scalar curvature metrics on product spaces, in particular on non-compact manifolds. We also construct suitable equivariant versions of these slant products and discuss related problems of exactness and amenability of the stable Higson corona.

Journal | Annales de l'Institut Fourier |

Volume | 71 (2021) no. 3 |

Pages | 913-1021 |

Link to preprint version | |

Link to published version |

**Related project(s):****10**Duality and the coarse assembly map

This paper is a systematic approach to the construction of coronas (i.e. Higson dominated boundaries at infinity) of combable spaces. We introduce three additional properties for combings: properness, coherence and expandingness. Properness is the condition under which our construction of the corona works. Under the assumption of coherence and expandingness, attaching our corona to a Rips complex construction yields a contractible \(\sigma\)-compact space in which the corona sits as a \(\mathbb{Z}\)-set. This results in bijectivity of transgression maps, injectivity of the coarse assembly map and surjectivity of the coarse co-assembly map. For groups we get an estimate on the cohomological dimension of the corona in terms of the asymptotic dimension. Furthermore, if the group admits a finite model for its classifying space \(BG\), then our constructions yield a \(\mathbb{Z}\)-structure for the group.

Journal | Journal of Topology and Analysis |

Volume | online ready |

Pages | 83p |

Link to preprint version | |

Link to published version |

**Related project(s):****10**Duality and the coarse assembly map

In this paper we discuss Perelman's Lambda-functional, Perelman's Ricci shrinker entropy as well as the Ricci expander entropy on a class of manifolds with isolated conical singularities. On such manifolds, a singular Ricci de Turck flow preserving the isolated conical singularities exists by our previous work. We prove that the entropies are monotone along the singular Ricci de Turck flow. We employ these entropies to show that in the singular setting, Ricci solitons are gradient and that steady or expanding Ricci solitons are Einstein.

Journal | Trans. Amer. Math. Soc. |

Volume | 374 |

Pages | 2873-2908 |

Link to preprint version | |

Link to published version |

**Related project(s):****21**Stability and instability of Einstein manifolds with prescribed asymptotic geometry**23**Spectral geometry, index theory and geometric flows on singular spaces

We consider the long-time behaviour of the mean curvature flow of spacelike hypersurfaces in the Lorentzian product manifold M×R, where M is asymptotically flat. If the initial hypersurface F⊂M×R is uniformly spacelike and asymptotic to M×{s} for some s∈R at infinity, we show that the mean curvature flow starting at F0 exists for all times and converges uniformly to M×{s} as t→∞.

Journal | J. Geom. Anal. |

Volume | 31 |

Pages | 5451–5479 |

Link to preprint version | |

Link to published version |

**Related project(s):****23**Spectral geometry, index theory and geometric flows on singular spaces

We consider the heat equation associated to Schrödinger operators acting on vector bundles on asymptotically locally Euclidean (ALE) manifolds. Novel *L**p*−*L**q* decay estimates are established, allowing the Schrödinger operator to have a non-trivial *L*2-kernel. We also prove new decay estimates for spatial derivatives of arbitrary order, in a general geometric setting. Our main motivation is the application to stability of non-linear geometric equations, primarily Ricci flow, which will be presented in a companion paper. The arguments in this paper use that many geometric Schrödinger operators can be written as the square of Dirac type operators. By a remarkable result of Wang, this is even true for the Lichnerowicz Laplacian, under the assumption of a parallel spinor. Our analysis is based on a novel combination of the Fredholm theory for Dirac type operators on ALE manifolds and recent advances in the study of the heat kernel on non-compact manifolds.

Journal | Int. Math Res. Not. |

Link to preprint version | |

Link to published version |

**Related project(s):****21**Stability and instability of Einstein manifolds with prescribed asymptotic geometry