## Prof. Dr. Petra Schwer

### Project leader

Otto von Guericke Universität Magdeburg

E-mail: petra.schwer(at)ovgu.de

Homepage: http://www.math.kit.edu/iag2/~schwer/

## Publications within SPP2026

We prove an affine analog of Scharlau's reduction theorem for spherical buildings. To be a bit more precise let *X* be a euclidean building with spherical building ∂*X* at infinity. Then there exists a euclidean building *X*¯ such that *X* splits as a product of *X*¯ with some euclidean *k*-space such that ∂*X*¯ is the thick reduction of ∂*X* in the sense of Scharlau. \newline In addition we prove a converse statement saying that an embedding of a thick spherical building at infinity extends to an embedding of the euclidean building having the extended spherical building as its boundary.

**Related project(s):****20**Compactifications and Local-to-Global Structure for Bruhat-Tits Buildings