Members & Guests

Dr. Christopher Wulff

Project leader

Georg-August-Universität Göttingen

E-mail: christopher.wulff(at)
Telephone: +49 551 39-7751

Publications within SPP2026

This paper is a systematic approach to the construction of coronas (i.e. Higson dominated boundaries at infinity) of combable spaces. We introduce three additional properties for combings: properness, coherence and expandingness. Properness is the condition under which our construction of the corona works. Under the assumption of coherence and expandingness, attaching our corona to a Rips complex construction yields a contractible \(\sigma\)-compact space in which the corona sits as a \(\mathbb{Z}\)-set. This results in bijectivity of transgression maps, injectivity of the coarse assembly map and surjectivity of the coarse co-assembly map. For groups we get an estimate on the cohomological dimension of the corona in terms of the asymptotic dimension. Furthermore, if the group admits a finite model for its classifying space \(BG\), then our constructions yield a \(\mathbb{Z}\)-structure for the group.

Related project(s):
10Duality and the coarse assembly map

  • 1

This website uses cookies

By using this page, browser cookies are set. Read more