Secondary invariants for foliations

The proposed project investigates local index theory and secondary invariants of foliations on a closed manifold.

Sara Azzali will focus on eta and torsion forms for foliations both in the Haefliger setting and in the noncommutative one. She will also work on applications of rho invariants and rho classes for foliations, and on the relation between analytically defined objects and constructions via K-theory exact sequences.

Sebastian Goette will focus on large time estimates for heat operators associated to Bismut superconnections. He will also continue to work on torsion invariants both for families and for foliations.


    Team Members

    Dr. Sara Azzali
    Project leader
    Universität Potsdam

    Prof. Dr. Sebastian Goette
    Project leader
    Albert-Ludwigs-Universität Freiburg im Breisgau