## Publications of SPP2026

On this site you find preprints and publications produced within the projects and with the support of the DFG priority programme „Geometry at Infinity“.

We introduce a new family of thermostat flows on the unit tangent bundle of an oriented Riemannian 2-manifold. Suitably reparametrised, these flows include the geodesic flow of metrics of negative Gauss curvature and the geodesic flow induced by the Hilbert metric on the quotient surface of divisible convex sets. We show that the family of flows can be parametrised in terms of certain weighted holomorphic differentials and investigate their properties. In particular, we prove that they admit a dominated splitting and we identify special cases in which the flows are Anosov. In the latter case, we study when they admit an invariant measure in the Lebesgue class and the regularity of the weak foliations.

Journal | Mathematische Annalen |

Publisher | Springer |

Volume | 373 |

Pages | 553--580 |

Link to preprint version | |

Link to published version |

**Related project(s):****26**Projective surfaces, Segre structures and the Hitchin component for PSL(n,R)

In this paper, we study the stability of the conical Kähler-Ricci flows on Fano manifolds. That is, if there exists a conical Kähler-Einstein metric with cone angle $2\pi\beta$ along the divisor, then for any $\beta'$ sufficiently close to $\beta$, the corresponding conical Kähler-Ricci flow converges to a conical Kähler-Einstein metric with cone angle $2\pi\beta'$ along the divisor. Here, we only use the condition that the Log Mabuchi energy is bounded from below. This is a weaker condition than the properness that we have adopted to study the convergence before. As corollaries, we give parabolic proofs of Donaldson's openness theorem and his existence conjecture for the conical Kähler-Einstein metrics with positive Ricci curvatures.

**Related project(s):****31**Solutions to Ricci flow whose scalar curvature is bounded in Lp.

In this paper, we study the limiting flow of conical Kähler-Ricci flows when the cone angles tend to $0$. We prove the existence and uniqueness of this limiting flow with cusp singularity on compact Kähler manifold $M$ which carries a smooth hypersurface $D$ such that the twisted canonical bundle $K_M+D$ is ample. Furthermore, we prove that this limiting flow converge to a unique cusp Kähler-Einstein metric.

Journal | Annali di Matematica Pura ed Applicata (1923 -) |

Link to preprint version |

**Related project(s):****31**Solutions to Ricci flow whose scalar curvature is bounded in Lp.

We study the asymptotics of the natural \(L^2\) metric on the Hitchin moduli space with group \(G=SU(2)\). Our main result, which addresses a detailed conjectural picture made by Gaiotto, Neitzke and Moore, is that on the regular part of the Hitchin system, this metric is well-approximated by the semiflat metric. We prove that the asymptotic rate of convergence for gauged tangent vectors to the moduli space has a precise polynomial expansion, and hence that the the difference between the two sets of metric coefficients in a certain natural coordinate system also has polynomial decay. Very recent work by Dumas and Neitzke indicates that the convergence rate for the metric is exponential, at least in certain directions.

Journal | Comm. Math. Phys. |

Publisher | Springer |

Volume | 367, no. 1 |

Pages | 151-191 |

Link to preprint version | |

Link to published version |

**Related project(s):****32**Asymptotic geometry of the Higgs bundle moduli space

We prove that the computation of the Fredholm index for fully elliptic pseudodifferential operators on Lie manifolds can be reduced to the computation of the index of Dirac operators perturbed by smoothing operators. To this end we adapt to our framework ideas coming from Baum-Douglas geometric K-homology and in particular we introduce a notion of geometric cycles that can be classified into a variant of the famous geometric K-homology groups, for the specific situation here. We also define comparison maps between this geometric K-homology theory and relative K-theory.

**Related project(s):****3**Geometric operators on a class of manifolds with bounded geometry

Moduli spaces of stable parabolic bundles of parabolic degree \(0\) over the Riemann sphere are stratified according to the Harder-Narasimhan filtration of underlying vector bundles. Over a Zariski open subset \(\mathscr{N}_{0}\) of the open stratum depending explicitly on a choice of parabolic weights, a real-valued function \(\mathscr{S}\) is defined as the regularized critical value of the non-compact Wess-Zumino-Novikov-Witten action functional. The definition of \(\mathscr{S}\) depends on a suitable notion of parabolic bundle 'uniformization map' following from the Mehta-Seshadri and Birkhoff-Grothendieck theorems. It is shown that \(-\mathscr{S}\) is a primitive for a (1,0)-form \(\vartheta\) on \(\mathscr{N}_{0}\) associated with the uniformization data of each intrinsic irreducible unitary logarithmic connection. Moreover, it is proved that \(-\mathscr{S}\) is a Kähler potential for \((\Omega-\Omega_{\mathrm{T}})|_{\mathscr{N}_{0}}\), where \(\Omega\) is the Narasimhan-Atiyah-Bott Kähler form in \(\mathscr{N}\) and \(\Omega_{\mathrm{T}}\) is a certain linear combination of tautological \((1,1)\)-forms associated with the marked points. These results provide an explicit relation between the cohomology class \([\Omega]\) and tautological classes, which holds globally over certain open chambers of parabolic weights where \(\mathscr{N}_{0} = \mathscr{N}\).

**Related project(s):****32**Asymptotic geometry of the Higgs bundle moduli space

Motivated by the work of Leznov-Mostovoy, we classify the linear deformations of standard \(2n\)-dimensional phase space that preserve the obvious symplectic \(\mathfrak{o}(n)\)-symmetry. As a consequence, we describe standard phase space, as well as \(T^{*}S^{n}\) and \(T^{*}\mathbb{H}^{n}\) with their standard symplectic forms, as degenerations of a 3-dimensional family of coadjoint orbits, which in a generic regime are identified with the Grassmannian of oriented 2-planes in \(\mathbb{R}^{n+2}\).

Journal | Journal of Geometric Mechanics |

Publisher | American Institute of Mathematical Sciences |

Volume | 11(1) |

Pages | 45-58 |

Link to preprint version | |

Link to published version |

**Related project(s):****32**Asymptotic geometry of the Higgs bundle moduli space

In this paper we establish stability of the Ricci de Turck flow near Ricci-flat metrics with isolated conical singularities. More precisely, we construct a Ricci de Turck flow which starts sufficiently close to a Ricci-flat metric with isolated conical singularities and converges to a singular Ricci-flat metric under an assumption of integrability, linear and tangential stability. We provide a characterization of conical singularities satisfying tangential stability and discuss examples where the integrability condition is satisfied.

Journal | Calc. Var. Part. Differ. Eq. |

Publisher | Springer |

Volume | 58 |

Pages | 75 |

Link to preprint version | |

Link to published version |

**Related project(s):****21**Stability and instability of Einstein manifolds with prescribed asymptotic geometry**23**Spectral geometry, index theory and geometric flows on singular spaces

We consider the long-time behaviour of the mean curvature flow of spacelike hypersurfaces in the Lorentzian product manifold *M*×R, where *M* is asymptotically flat. If the initial hypersurface *F*0⊂*M*×R is uniformly spacelike and asymptotic to *M*×{*s*} for some *s*∈R at infinity, we show that the mean curvature flow starting at *F*0 exists for all times and converges uniformly to *M*×{*s*} as *t*→∞.

**Related project(s):****21**Stability and instability of Einstein manifolds with prescribed asymptotic geometry**29**Curvature flows without singularities**30**Nonlinear evolution equations on singular manifolds**31**Solutions to Ricci flow whose scalar curvature is bounded in Lp.

We consider the Cahn-Hilliard equation on manifolds with conical singularities. For appropriate initial data we show that the solution exists in the maximal \(L^q\)-regularity space for all times and becomes instantaneously smooth in space and time, where the maximal \(L^q\)-regularity is obtained in the sense of Mellin-Sobolev spaces. Moreover, we provide precise information concerning the asymptotic behavior of the solution close to the conical tips in terms of the local geometry.

**Related project(s):****30**Nonlinear evolution equations on singular manifolds

We represent algebraic curves via commuting matrix polynomials. This allows us to show that the canonical Obata connection on the Hilbert scheme of cohomologically stable twisted rational curves of degree *d* in the ℙ3∖ℙ1 is flat for any *d*≥3.

**Related project(s):****7**Asymptotic geometry of moduli spaces of curves

We investigate the geometry of the Kodaira moduli space* M* of sections of a twistor projection, the normal bundle of which is allowed to jump. In particular, we identify the natural assumptions which guarantee that the Obata connection of the hypercomplex part of *M* extends to a logarithmic connection on *M*.

**Related project(s):****7**Asymptotic geometry of moduli spaces of curves

We describe the natural geometry of Hilbert schemes of curves in projective spaces.

**Related project(s):****7**Asymptotic geometry of moduli spaces of curves

In this paper, we study the long-time behavior of modified Calabi flow to study the existence of generalized Kähler-Ricci soliton. We first give a new expression of the modified $K$-energy and prove its convexity along weak geodesics. Then we extend this functional to some finite energy spaces. After that, we study the long-time behavior of modified Calabi flow.

Journal | The Journal of Geometric Analysis |

Link to preprint version |

**Related project(s):****31**Solutions to Ricci flow whose scalar curvature is bounded in Lp.

We develop a categorical index calculus for elliptic symbol families. The categorified index problems we consider are a secondary version of the traditional problem of expressing the index class in K-theory in terms of differential-topological data. They include orientation problems for moduli spaces as well as similar problems for skew-adjoint and self-adjoint operators. The main result of this paper is an excision principle which allows the comparison of categorified index problems on different manifolds. Excision is a powerful technique for actually solving the orientation problem; applications appear in the companion papers arXiv:1811.01096, arXiv:1811.02405, and arXiv:1811.09658.

**Related project(s):****33**Gerbes in renormalization and quantization of infinite-dimensional moduli spaces

Pseudo H-type Lie groups \(G_{r,s}\) of signature (r,s) are defined via a module action of the Clifford algebra \(C\ell_{r,s}\) on a vector space V≅\(\mathbb{R}^{2n}\). They form a subclass of all 2-step nilpotent Lie groups and based on their algebraic structure they can be equipped with a left-invariant pseudo-Riemannian metric. Let \(\mathcal{N}_{r,s}\) denote the Lie algebra corresponding to \(G_{r,s}\). A choice of left-invariant vector fields [\(X_1, \ldots, X_{2n}\)] which generate a complement of the center of \(\mathcal{N}_{r,s}\) gives rise to a second order operator

\(\Delta_{r,s}:=\big{(}X_1^2+ \ldots + X_n^2\big{)}- \big{(}X_{n+1}^2+ \ldots +X_{2n}^2 \big{)}\)

which we call ultra-hyperbolic. In terms of classical special functions we present families of fundamental solutions of \(\Delta_{r,s}\) in the case r=0, s>0 and study their properties. In the case of r>0 we prove that \(\Delta_{r,s}\) admits no fundamental solution in the space of tempered distributions. Finally we discuss the local solvability of \(\Delta_{r,s}\) and the existence of a fundamental solution in the space of Schwartz distributions.

**Related project(s):****6**Spectral Analysis of Sub-Riemannian Structures

We prove that the sign of the Euler characteristic of arithmetic groups with CSP is determined by the profinite completion. In contrast, we construct examples showing that this is not true for the Euler characteristic itself and that the sign of the Euler characteristic is not profinite among general residually finite groups of type F. Our methods imply similar results for L2-torsion as well as a strong profiniteness statement for Novikov--Shubin invariants.

**Related project(s):****18**Analytic L2-invariants of non-positively curved spaces

Let *N* be a smooth manifold that is homeomorphic but not diffeomorphic to a closed hyperbolic manifold *M*. In this paper, we study the extent to which *N* admits as much symmetry as *M*. Our main results are examples of *N* that exhibit two extremes of behavior. On the one hand, we find *N* with maximal symmetry, i.e. Isom(*M*) acts on *N* by isometries with respect to some negatively curved metric on *N*. For these examples, Isom(*M*) can be made arbitrarily large. On the other hand, we find *N* with little symmetry, i.e. no subgroup of Isom(*M*) of "small" index acts by diffeomorphisms of *N*. The construction of these examples incorporates a variety of techniques including smoothing theory and the Belolipetsky-Lubotzky method for constructing hyperbolic manifolds with a prescribed isometry group.

**Related project(s):****15**Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds

In this short survey article, we showcase a number of non-trivial geometric problems that have recently been resolved by marrying methods from functional calculus and real-variable harmonic analysis. We give a brief description of these methods as well as their interplay. This survey is succinct rather than comprehensive, and its aim is to inspire geometers and analysts alike to study these methods so that they can be adapted and potentially applied more widely.

**Related project(s):****5**Index theory on Lorentzian manifolds

We construct a Baum--Connes assembly map localised at the unit element of a discrete group $\Gamma$.

This morphism, called $\mu_\tau$, is defined in $KK$-theory with coefficients in $\mathbb{R}$ by means of the action of the projection $[\tau]\in KK_\mathbb{R}^\Gamma(\mathbb{C},\mathbb{C})$ canonically associated to the group trace of $\Gamma$. The right hand side of $\mu_\tau$ is functorial with respect to the group $\Gamma$.

We show that the corresponding $\tau$-Baum--Connes conjecture is weaker then the classical one but still implies the strong Novikov conjecture.

Journal | to appear on Compositio Mathematica |

Link to preprint version |

**Related project(s):****4**Secondary invariants for foliations