Publications

Publications of SPP2026

On this site you find preprints and publications produced within the projects and with the support of the DFG priority programme „Geometry at Infinity“.

all projects
  • all projects
  • 01Hitchin components for orbifolds
  • 02Asymptotic geometry of sofic groups and manifolds
  • 03Geometric operators on a class of manifolds with bounded geometry
  • 04Secondary invariants for foliations
  • 05Index theory on Lorentzian manifolds
  • 06Spectral Analysis of Sub-Riemannian Structures
  • 07Asymptotic geometry of moduli spaces of curves
  • 08Parabolics and invariants
  • 09Diffeomorphisms and the topology of positive scalar curvature
  • 10Duality and the coarse assembly map
  • 11Topological and equivariant rigidity in the presence of lower curvature bounds
  • 12Anosov representations and Margulis spacetimes
  • 13Analysis on spaces with fibred cusps
  • 14Boundaries of acylindrically hyperbolic groups and applications
  • 15Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds
  • 16Minimizer of the Willmore energy with prescribed rectangular conformal class
  • 17Existence, regularity and uniqueness results of geometric variational problems
  • 18Analytic L2-invariants of non-positively curved spaces
  • 19Boundaries, Greens formulae and harmonic functions for graphs and Dirichlet spaces
  • 20Compactifications and Local-to-Global Structure for Bruhat-Tits Buildings
  • 21Stability and instability of Einstein manifolds with prescribed asymptotic geometry
  • 22Willmore functional and Lagrangian surfaces
  • 23Spectral geometry, index theory and geometric flows on singular spaces
  • 24Minimal surfaces in metric spaces
  • 25The Willmore energy of degenerating surfaces and singularities of geometric flows
  • 26Projective surfaces, Segre structures and the Hitchin component for PSL(n,R)
  • 27Invariants and boundaries of spaces
  • 28Rigidity, deformations and limits of maximal representations
  • 29Curvature flows without singularities
  • 30Nonlinear evolution equations on singular manifolds
  • 31Solutions to Ricci flow whose scalar curvature is bounded in Lp.
  • 32Asymptotic geometry of the Higgs bundle moduli space
  • 33Gerbes in renormalization and quantization of infinite-dimensional moduli spaces
  • 34Asymptotic geometry of sofic groups and manifolds II
  • 35Geometric operators on singular domains
  • 36Cohomogeneity, curvature, cohomology
  • 37Boundary value problems and index theory on Riemannian and Lorentzian manifolds
  • 38Geometry of surface homeomorphism groups
  • 39Geometric invariants of discrete and locally compact groups
  • 40Construction of Riemannian manifolds with scalar curvature constraints and applications to general relativity
  • 41Geometrically defined asymptotic coordinates in general relativity
  • 42Spin obstructions to metrics of positive scalar curvature on nonspin manifolds
  • 43Singular Riemannian foliations and collapse
  • 44Actions of mapping class groups and their subgroups
  • 45Macroscopic invariants of manifolds
  • 46Ricci flows for non-smooth spaces, monotonic quantities, and rigidity
  • 47Self-adjointness of Laplace and Dirac operators on Lorentzian manifolds foliated by noncompact hypersurfaces
  • 48Profinite and RFRS groups
  • 49Analysis on spaces with fibred cusps II
  • 50Probabilistic and spectral properties of weighted Riemannian manifolds with Kato bounded Bakry-Emery-Ricci curvature
  • 51The geometry of locally symmetric manifolds via natural maps
  • 52Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds II
  • 53Gauge-theoretic methods in the geometry of G2-manifolds
  • 54Cohomology of symmetric spaces as seen from infinity
  • 55New hyperkähler spaces from the the self-duality equations
  • 56Large genus limit of energy minimizing compact minimal surfaces in the 3-sphere
  • 57Existence, regularity and uniqueness results of geometric variational problems II
  • 58Profinite perspectives on l2-cohomology
  • 59Laplacians, metrics and boundaries of simplicial complexes and Dirichlet spaces
  • 60Property (T)
  • 61At infinity of symmetric spaces
  • 62A unified approach to Euclidean buildings and symmetric spaces of noncompact type
  • 63Uniqueness in mean curvature flow
  • 64Spectral geometry, index theory and geometric flows on singular spaces II
  • 65Resonances for non-compact locally symmetric spaces
  • 66Minimal surfaces in metric spaces II
  • 67Asymptotics of singularities and deformations
  • 68Minimal Lagrangian connections and related structures
  • 69Wall-crossing and hyperkähler geometry of moduli spaces
  • 70Spectral theory with non-unitary twists
  • 71Rigidity, deformations and limits of maximal representations II
  • 72Limits of invariants of translation surfaces
  • 73Geometric Chern characters in p-adic equivariant K-theory
  • 74Rigidity, stability and deformations in nearly parallel G2-geometry
  • 75Solutions to Ricci flow whose scalar curvature is bounded in L^p II
  • 76Singularities of the Lagrangian mean curvature flow
  • 77Asymptotic geometry of the Higgs bundle moduli space II
  • 78Duality and the coarse assembly map II
  • 79Alexandrov geometry in the light of symmetry and topology
  • 80Nonlocal boundary problems: Index theory and semiclassical asymptotics

We investigate a quantization problem which asks for the construction of an algebra for relative elliptic problems of pseudodifferential type associated to smooth embeddings. Specifically, we study the problem for embeddings in the category of compact manifolds with corners. The construction of a calculus for elliptic problems is achieved using the theory of Fourier integral operators on Lie groupoids. We show that our calculus is closed under composition and furnishes a so-called noncommutative completion of the given embedding. A representation of the algebra is defined and the continuity of the operators in the algebra on suitable Sobolev spaces is established.

 

 

Related project(s):
3Geometric operators on a class of manifolds with bounded geometry

The canonical map from the \(\mathbb{Z}/2\)-equivariant Lazard ring to the \(\mathbb{Z}/2\)-equivariant complex bordism ring is an isomorphism. 

 

Related project(s):
15Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds

We study the Kazdan-Warner equation on canonically compactifiable graphs. These graphs are distinguished as analytic properties of Laplacians on these graphs carry a strong resemblance to Laplacians on open pre-compact manifolds.

 

Related project(s):
19Boundaries, Greens formulae and harmonic functions for graphs and Dirichlet spaces

We prove that the Atiyah-Singer Dirac operator ${\mathrm D}_{\mathrm g}$ in ${\mathrm L}^2$ depends Riesz continuously on ${\mathrm L}^{\infty}$ perturbations of complete metrics ${\mathrm g}$ on a smooth manifold. The Lipschitz bound for the map ${\mathrm g} \to {\mathrm D}_{\mathrm g}(1 + {\mathrm D}_{\mathrm g}^2)^{-\frac{1}{2}}$ depends on bounds on Ricci curvature and its first derivatives as well as a lower bound on injectivity radius. Our proof uses harmonic analysis techniques related to Calder\'on's first commutator and the Kato square root problem. We also show perturbation results for more general functions of general Dirac-type operators on vector bundles.

 

Related project(s):
5Index theory on Lorentzian manifolds

In this note we study some analytic properties of the linearized self-duality equations on a family of smooth Riemann surfaces \( \Sigma_R\) converging for \(R\searrow 0\) to a surface \( \Sigma_0\) with a finite number of nodes. It is shown that the linearization along the fibres of the Hitchin fibration \(\mathcal M_d \to \Sigma_R\) gives rise to a graph-continuous Fredholm family, the index of it being stable when passing to the limit. We also report on similarities and differences between properties of the Hitchin fibration in this degeneration and in the limit of large Higgs fields as studied in Mazzeo et al. (Duke Math. J. 165(12):2227–2271, 2016).

 

JournalAbh. Math. Semin. Univ. Hambg.
PublisherSpringer Berlin Heidelberg
Volume86
Pages189--201
Link to preprint version
Link to published version

Related project(s):
32Asymptotic geometry of the Higgs bundle moduli space

We discuss the chiral anomaly for a Weyl field in a curved background and show that a novel index theorem for the Lorentzian Dirac operator can be applied to describe the gravitational chiral anomaly. A formula for the total charge generated by the gravitational and gauge field background is derived in a mathematically rigorous manner. It contains a term identical to the integrand in the Atiyah-Singer index theorem and another term involving the η-invariant of the Cauchy hypersurfaces.

 

JournalCommun. Math. Phys.
PublisherSpringer
Volume347
Pages703-721
Link to preprint version
Link to published version

Related project(s):
5Index theory on Lorentzian manifolds

We associate to each stable Higgs pair \((A_0,\Phi_0)\) on a compact Riemann surface X a singular limiting configuration \((A_\infty,\Phi_\infty)\), assuming that \(\det\Phi\) has only simple zeroes. We then prove a desingularization theorem by constructing a family of solutions \((A_t,\Phi_t) \) to Hitchin's equations which converge to this limiting configuration as \(t\to\infty\). This provides a new proof, via gluing methods, for elements in the ends of the Higgs bundle moduli space and identifies a dense open subset of the boundary of the compactification of this moduli space.  

 

JournalDuke Math. J.
PublisherDuke University Press
Volume165
Pages2227-2271
Link to preprint version
Link to published version

Related project(s):
32Asymptotic geometry of the Higgs bundle moduli space

An upper bound is obtained on the rank of a torus which can act smoothly and effectively on a smooth, closed, simply connected, rationally elliptic manifold. In the maximal-rank case, the manifolds admitting such actions are classified up to equivariant rational homotopy type.

 

Related project(s):
11Topological and equivariant rigidity in the presence of lower curvature bounds

We present a new technique that employs partial differential equations in order to explicitly construct primitives in the continuous bounded cohomology of Lie groups. As an application, we prove a vanishing theorem for the continuous bounded cohomology of SL(2,R) in degree 4, establishing a special case of a conjecture of Monod.

 

JournalGeometry & Topology
Volume19
Pages3603–3643
Link to preprint version
Link to published version

Related project(s):
27Invariants and boundaries of spaces

Let \(M^n, n \in \{4,5,6\}\), be a compact, simply connected n-manifold which admits some Riemannian metric with non-negative curvature and an isometry group of maximal possible rank. Then any smooth, effective action on \(M^n\) by a torus \(T^{n-2}\) is equivariantly diffeomorphic to an isometric action on a normal biquotient. Furthermore, it follows that any effective, isometric circle action on a compact, simply connected, non-negatively curved four-dimensional manifold is equivariantly diffeomorphic to an effective, isometric action on a normal biquotient.

 

JournalMath. Z.
Volume276
Pages133--152
Link to preprint version
Link to published version

Related project(s):
11Topological and equivariant rigidity in the presence of lower curvature bounds

We give a solution of Plateau's problem for singular curves possibly having self-intersections. The proof is based on the solution of Plateau's problem for Jordan curves in very general metric spaces by Alexander Lytchak and Stefan Wenger and hence works also in a quite general setting. However the main result of this paper seems to be new even in $\mathbb{R}^n$.

JournalComm. Anal. Geom.
Link to preprint version

Related project(s):
24Minimal surfaces in metric spaces

This website uses cookies

By using this page, browser cookies are set. Read more ›