Publications

Publications of SPP2026

On this site you find preprints and publications produced within the projects and with the support of the DFG priority programme „Geometry at Infinity“.

all projects
  • all projects
  • 01Hitchin components for orbifolds
  • 02Asymptotic geometry of sofic groups and manifolds
  • 03Geometric operators on a class of manifolds with bounded geometry
  • 04Secondary invariants for foliations
  • 05Index theory on Lorentzian manifolds
  • 06Spectral Analysis of Sub-Riemannian Structures
  • 07Asymptotic geometry of moduli spaces of curves
  • 08Parabolics and invariants
  • 09Diffeomorphisms and the topology of positive scalar curvature
  • 10Duality and the coarse assembly map
  • 11Topological and equivariant rigidity in the presence of lower curvature bounds
  • 12Anosov representations and Margulis spacetimes
  • 13Analysis on spaces with fibred cusps
  • 14Boundaries of acylindrically hyperbolic groups and applications
  • 15Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds
  • 16Minimizer of the Willmore energy with prescribed rectangular conformal class
  • 17Existence, regularity and uniqueness results of geometric variational problems
  • 18Analytic L2-invariants of non-positively curved spaces
  • 19Boundaries, Greens formulae and harmonic functions for graphs and Dirichlet spaces
  • 20Compactifications and Local-to-Global Structure for Bruhat-Tits Buildings
  • 21Stability and instability of Einstein manifolds with prescribed asymptotic geometry
  • 22Willmore functional and Lagrangian surfaces
  • 23Spectral geometry, index theory and geometric flows on singular spaces
  • 24Minimal surfaces in metric spaces
  • 25The Willmore energy of degenerating surfaces and singularities of geometric flows
  • 26Projective surfaces, Segre structures and the Hitchin component for PSL(n,R)
  • 27Invariants and boundaries of spaces
  • 28Rigidity, deformations and limits of maximal representations
  • 29Curvature flows without singularities
  • 30Nonlinear evolution equations on singular manifolds
  • 31Solutions to Ricci flow whose scalar curvature is bounded in Lp.
  • 32Asymptotic geometry of the Higgs bundle moduli space
  • 33Gerbes in renormalization and quantization of infinite-dimensional moduli spaces

In this paper, we study the stability of the conical Kähler-Ricci flows on Fano manifolds. That is, if there exists a conical Kähler-Einstein metric with cone angle $2\pi\beta$ along the divisor, then for any $\beta'$ sufficiently close to $\beta$, the corresponding conical Kähler-Ricci flow converges to a conical Kähler-Einstein metric with cone angle $2\pi\beta'$ along the divisor. Here, we only use the condition that the Log Mabuchi energy is bounded from below. This is a weaker condition than the properness that we have adopted to study the convergence before. As corollaries, we give parabolic proofs of Donaldson's openness theorem and his existence conjecture for the conical Kähler-Einstein metrics with small cone angles.

 

Related project(s):
31Solutions to Ricci flow whose scalar curvature is bounded in Lp.

We consider the Cahn-Hilliard equation on manifolds with conical singularities. For appropriate initial data we show that the solution exists in the maximal \(L^q\)-regularity space for all times and becomes instantaneously smooth in space and time, where the maximal \(L^q\)-regularity is obtained in the sense of Mellin-Sobolev spaces. Moreover, we provide precise information concerning the asymptotic behavior of the solution close to the conical tips in terms of the local geometry.

 

Related project(s):
30Nonlinear evolution equations on singular manifolds

We represent algebraic curves via commuting matrix polynomials. This allows us to show that the canonical Obata connection on the Hilbert scheme of cohomologically stable twisted rational curves of degree d in the ℙ3∖ℙ1 is flat for any d≥3.

 

Related project(s):
7Asymptotic geometry of moduli spaces of curves

We investigate the geometry of the Kodaira moduli space M of sections of a twistor projection, the normal bundle of which is allowed to jump. In particular, we identify the natural assumptions which guarantee that the Obata connection of the hypercomplex part of M extends to a logarithmic connection on M.

 

Related project(s):
7Asymptotic geometry of moduli spaces of curves

In this paper, we study the limiting flow of conical Kähler-Ricci flows when the cone angles tend to $0$. We prove the existence and uniqueness of this limiting flow with cusp singularity on compact Kähler manifold $M$ which carries a smooth hypersurface $D$ such that the twisted canonical bundle $K_M+D$ is ample. Furthermore, we prove that this limiting flow converge to a unique cusp Kähler-Einstein metric.

 

JournalAnnali di Matematica Pura ed Applicata
Link to preprint version

Related project(s):
31Solutions to Ricci flow whose scalar curvature is bounded in Lp.

In this paper, we study the long-time behavior of modified Calabi flow to study the existence of generalized Kähler-Ricci soliton. We first give a new expression of the modified $K$-energy and prove its convexity along weak geodesics. Then we extend this functional to some finite energy spaces. After that, we study the long-time behavior of modified Calabi flow.

 

JournalThe Journal of Geometric Analysis
Link to preprint version

Related project(s):
31Solutions to Ricci flow whose scalar curvature is bounded in Lp.

In this paper we discuss Perelman's Lambda-functional, Perelman's Ricci shrinker entropy as well as the Ricci expander entropy on a class of manifolds with isolated conical singularities. On such manifolds, a singular Ricci de Turck flow preserving the isolated conical singularities exists by our previous work. We prove that the entropies are monotone along the singular Ricci de Turck flow. We employ these entropies to show that in the singular setting, Ricci solitons are gradient and that steady or expanding Ricci solitons are Einstein.

 

Related project(s):
21Stability and instability of Einstein manifolds with prescribed asymptotic geometry30Nonlinear evolution equations on singular manifolds

We develop a categorical index calculus for elliptic symbol families. The categorified index problems we consider are a secondary version of the traditional problem of expressing the index class in K-theory in terms of differential-topological data. They include orientation problems for moduli spaces as well as similar problems for skew-adjoint and self-adjoint operators. The main result of this paper is an excision principle which allows the comparison of categorified index problems on different manifolds. Excision is a powerful technique for actually solving the orientation problem; applications appear in the companion papers arXiv:1811.01096, arXiv:1811.02405, and arXiv:1811.09658.

 

Related project(s):
33Gerbes in renormalization and quantization of infinite-dimensional moduli spaces

Pseudo H-type Lie groups \(G_{r,s}\) of signature (r,s) are defined via a module action of the Clifford algebra \(C\ell_{r,s}\) on a vector space V≅\(\mathbb{R}^{2n}\). They form a subclass of all 2-step nilpotent Lie groups and based on their algebraic structure they can be equipped with a left-invariant pseudo-Riemannian metric. Let \(\mathcal{N}_{r,s}\) denote the Lie algebra corresponding to \(G_{r,s}\). A choice of left-invariant vector fields [\(X_1, \ldots, X_{2n}\)] which generate a complement of the center of \(\mathcal{N}_{r,s}\) gives rise to a second order operator

 

\(\Delta_{r,s}:=\big{(}X_1^2+ \ldots + X_n^2\big{)}- \big{(}X_{n+1}^2+ \ldots +X_{2n}^2 \big{)}\)

 

which we call ultra-hyperbolic. In terms of classical special functions we present families of fundamental solutions of \(\Delta_{r,s}\) in the case r=0, s>0 and study their properties. In the case of r>0 we prove that \(\Delta_{r,s}\) admits no fundamental solution in the space of tempered distributions. Finally we discuss the local solvability of \(\Delta_{r,s}\) and the existence of a fundamental solution in the space of Schwartz distributions.

 

Related project(s):
6Spectral Analysis of Sub-Riemannian Structures

We prove that the sign of the Euler characteristic of arithmetic groups with CSP is determined by the profinite completion.  In contrast, we construct examples showing that this is not true for the Euler characteristic itself and that the sign of the Euler characteristic is not profinite among general residually finite groups of type F.  Our methods imply similar results for L2-torsion as well as a strong profiniteness statement for Novikov--Shubin invariants.

 

Related project(s):
18Analytic L2-invariants of non-positively curved spaces

Let N be a smooth manifold that is homeomorphic but not diffeomorphic to a closed hyperbolic manifold M. In this paper, we study the extent to which N admits as much symmetry as M. Our main results are examples of N that exhibit two extremes of behavior. On the one hand, we find N with maximal symmetry, i.e. Isom(M) acts on N by isometries with respect to some negatively curved metric on N. For these examples, Isom(M) can be made arbitrarily large. On the other hand, we find N with little symmetry, i.e. no subgroup of Isom(M) of "small" index acts by diffeomorphisms of N. The construction of these examples incorporates a variety of techniques including smoothing theory and the Belolipetsky-Lubotzky method for constructing hyperbolic manifolds with a prescribed isometry group.

 

Related project(s):
15Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds

In this short survey article, we showcase a number of non-trivial geometric problems that have recently been resolved by marrying methods from functional calculus and real-variable harmonic analysis. We give a brief description of these methods as well as their interplay. This survey is succinct rather than comprehensive, and its aim is to inspire geometers and analysts alike to study these methods so that they can be adapted and potentially applied more widely.

 

Related project(s):
5Index theory on Lorentzian manifolds

In this paper, by providing the uniform gradient estimates for approximating equations, we prove the existence, uniqueness and regularity of conical parabolic complex Monge-Ampère equation with weak initial data. As an application, we obtain a regularity estimate, that is, any $L^{\infty}$-solution of the conical complex Monge-Ampère equation admits the $C^{2,\alpha,\beta}$-regularity.

 

JournalCalculus of Variations and Partial Differential Equations
Link to preprint version

Related project(s):
31Solutions to Ricci flow whose scalar curvature is bounded in Lp.

We show that local deformations, near closed subsets, of solutions to open partial differential relations can be extended to global deformations, provided all but the highest derivatives stay constant along the subset. The applicability of this general result is illustrated by a number of examples, dealing with convex embeddings of hypersurfaces, differential forms, and lapse functions in Lorentzian geometry.

The main application is a general approximation result by sections which have very restrictive local properties an open dense subsets. This shows, for instance, that given any K∈R every manifold of dimension at least two carries a complete C^1,1-metric which, on a dense open subset, is smooth with constant sectional curvature K. Of course this is impossible for C^2-metrics in general.

 

Related project(s):
5Index theory on Lorentzian manifolds15Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds

Given two weighted graphs $(X,b_k,m_k)$, $k=1,2$ with $b_1\sim b_2$ and $m_1\sim m_2$, we prove a weighted $L^1$-criterion for the existence and completeness of the wave operators $W_{\pm}(H_{2},H_1, I_{1,2})$, where $H_k$ denotes the natural Laplacian in $\ell^2(X,m_k)$ w.r.t. $(X,b_k,m_k)$ and $I_{1,2}$ the trivial identification of $\ell^2(X,m_1)$ with $\ell^2(X,m_2)$. In particular, this entails a general criterion for the absolutely continuous spectra of $H_1$ and $H_2$ to be equal.

 

JournalMath. Phys. Anal. Geom.
Pages21-28
Link to preprint version

Related project(s):
19Boundaries, Greens formulae and harmonic functions for graphs and Dirichlet spaces

The purpose of this article is to define and study new invariants of topological spaces: the p-adic Betti numbers and the p-adic torsion. These invariants take values in the p-adic numbers and are constructed from a virtual pro-p completion of the fundamental group. The key result of the article is an approximation theorem which shows that the p-adic invariants are limits of their classical analogues. This is reminiscent of Lück's approximation theorem for L2-Betti numbers.

After an investigation of basic properties and examples we discuss the p-adic analog of the Atiyah conjecture: When do the p-adic Betti numbers take integer values? We establish this property for a class of spaces and discuss applications to cohomology growth.

 

Related project(s):
18Analytic L2-invariants of non-positively curved spaces

We define a Toledo number for actions of surface groups and complex hyperbolic lattices on infinite dimensional Hermitian symmetric spaces, which allows us to define maximal representations. When the target is not of tube type we show that there cannot be Zariski-dense maximal representations, and whenever the existence of a boundary map can be guaranteed, the representation preserves a finite dimensional totally geodesic subspace on which the action is maximal. In the opposite direction we construct examples of geometrically dense maximal representation in the infinite dimensional Hermitian symmetric space of tube type and finite rank. Our approach is based on the study of boundary maps, that we are able to construct in low ranks or under some suitable Zariski-density assumption, circumventing the lack of local compactness in the infinite dimensional setting.

 

Related project(s):
28Rigidity, deformations and limits of maximal representations

Manifolds all of whose geodesics are closed have been studied a lot, but there are only few examples known. The situation is different if one allows in addition for orbifold singularities. We show, nevertheless, that the abundance of new examples is restricted to even dimensions. As one key ingredient we provide a characterization of orientable manifolds among orientable orbifolds in terms of characteristic classes.

 

Related project(s):
15Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds

We prove that $\mathrm{Aut}(F_n)$ has Kazhdan's property (T) for every $n \geqslant 6$. Together with a previous result of Kaluba, Nowak, and Ozawa, this gives the same statement for $n\geqslant 5$.

 

We also provide explicit lower bounds for the Kazhdan constants of $\mathrm{SAut}(F_n)$ (with $n \geqslant 6$) and of $\mathrm{SL}_n(\mathbb Z)$ (with $n \geqslant 3$) with respect to natural generating sets.

In the latter case, these bounds improve upon previously known lower bounds whenever $n> 6$.

 

Related project(s):
8Parabolics and invariants

This website uses cookies

By using this page, browser cookies are set. Read more