## Publications of SPP2026

On this site you find preprints and publications produced within the projects and with the support of the DFG priority programme „Geometry at Infinity“.

We give a solution of Plateau's problem for singular curves possibly having self-intersections. The proof is based on the solution of Plateau's problem for Jordan curves in very general metric spaces by Alexander Lytchak and Stefan Wenger and hence works also in a quite general setting. However the main result of this paper seems to be new even in $\mathbb{R}^n$.

Journal | Comm. Anal. Geom. |

Link to preprint version |

**Related project(s):****24**Minimal surfaces in metric spaces

In each dimension $4k+1\geq 9$, we exhibit infinite families of closed manifolds with fundamental group $\mathbb Z_2$ for which the moduli space of metrics of nonnegative sectional curvature has infinitely many path components. Examples of closed manifolds with finite fundamental group with this property were known before only in dimension $5$ and dimensions $4k+3\geq 7$.

**Related project(s):****15**Spaces and Moduli Spaces of Riemannian Metrics with Curvature Bounds on compact and non-compact Manifolds

We investigate the class of geodesic metric discs satisfying a uniform quadratic isoperimetric inequality and uniform bounds on the length of the boundary circle. We show that the closure of this class as a subset of Gromov-Hausdorff space is intimately related to the class of geodesic metric disc retracts satisfying comparable bounds. This kind of discs naturally come up in the context of the solution of Plateau's problem in metric spaces by Lytchak and Wenger as generalizations of minimal surfaces.

Journal | Geom. Dedicata |

Link to preprint version | |

Link to published version |

**Related project(s):****24**Minimal surfaces in metric spaces

We study $\ell^2$ Betti numbers, coherence, and virtual fibring of random groups in the few-relator model. In particular, random groups with negative Euler characteristic are coherent, have $\ell^2$ homology concentrated in dimension 1, and embed in a virtually free-by-cyclic group with high probability. Similar results are shown with positive probability in the zero Euler characteristic case.

**Related project(s):****8**Parabolics and invariants

We show that a finitely generated residually finite rationally solvable (or RFRS) group *G* is virtually fibred, in the sense that it admits a virtual surjection to $\mathbb Z$ with a finitely generated kernel, if and only if the first $L^2$-Betti number of *G* vanishes. This generalises (and gives a new proof of) the analogous result of Ian Agol for fundamental groups of 3-manifolds.

Journal | J. Amer. Math. Soc |

Link to preprint version | |

Link to published version |

**Related project(s):****8**Parabolics and invariants

We study the Newton polytopes of determinants of square matrices defined over rings of twisted Laurent polynomials. We prove that such Newton polytopes are single polytopes (rather than formal differences of two polytopes); this result can be seen as analogous to the fact that determinants of matrices over commutative Laurent polynomial rings are themselves polynomials, rather than rational functions. We also exhibit a relationship between the Newton polytopes and invertibility of the matrices over Novikov rings, thus establishing a connection with the invariants of Bieri-Neumann-Strebel (BNS) via a theorem of Sikorav.

We offer several applications: we reprove Thurston's theorem on the existence of a polytope controlling the BNS invariants of a 3-manifold group; we extend this result to free-by-cyclic groups, and the more general descending HNN extensions of free groups. We also show that the BNS invariants of Poincare duality groups of type F in dimension 3 and groups of deficiency one are determined by a polytope, when the groups are assumed to be agrarian, that is their integral group rings embed in skew-fields. The latter result partially confirms a conjecture of Friedl.

We also deduce the vanishing of the Newton polytopes associated to elements of the Whitehead groups of many groups satisfying the Atiyah conjecture. We use this to show that the *L*2-torsion polytope of Friedl-Lueck is invariant under homotopy. We prove the vanishing of this polytope in the presence of amenability, thus proving a conjecture of Friedl-Lueck-Tillmann.

Journal | Invent. Math. |

Link to preprint version | |

Link to published version |

**Related project(s):****8**Parabolics and invariants

For every Lie group *G*, we compute the maximal *n* such that an *n*-fold product of nonabelian free groups embeds into *G*.

**Related project(s):****18**Analytic L2-invariants of non-positively curved spaces

This paper relates different approaches to the asymptotic geometry of the

Hitchin moduli space of SL(2,C) Higgs bundles on a closed Riemann surface and,

via the nonabelian Hodge theorem, the character variety of SL(2,C)

representations of a surface group. Specifically, we find an asymptotic

correspondence between the analytically defined limiting configuration of a

sequence of solutions to the self-duality equations constructed by

Mazzeo-Swoboda-Weiss-Witt, and the geometric topological shear-bend parameters

of equivariant pleated surfaces due to Bonahon and Thurston. The geometric link

comes from a study of high energy harmonic maps. As a consequence we prove: (1)

the local invariance of the partial compactification of the moduli space by

limiting configurations; (2) a refinement of the harmonic maps characterization

of the Morgan-Shalen compactification of the character variety; and (3) a

comparison between the family of complex projective structures defined by a

quadratic differential and the realizations of the corresponding flat

connections as Higgs bundles, as well as a determination of the asymptotic

shear-bend cocycle of Thurston's pleated surface.

**Related project(s):****27**Invariants and boundaries of spaces**32**Asymptotic geometry of the Higgs bundle moduli space

Our main result gives an improved bound on the filling areas of closed curves in Banach spaces which are not closed geodesics. As applications we show rigidity of Pu's classical systolic inequality and investigate the isoperimetric constants of normed spaces. The latter has further applications concerning the regularity of minimal surfaces in Finsler manifolds.

**Related project(s):****24**Minimal surfaces in metric spaces

Let $X$ be a Banach space or more generally a complete metric space admitting a conical geodesic bicombing. We prove that every closed $L$-Lipschitz curve $\gamma:S^1\rightarrow X$ may be extended to an $L$-Lipschitz map defined on the hemisphere $f:H^2\rightarrow X$. This implies that $X$ satisfies a quadratic isoperimetric inequality (for curves) with constant $\frac{1}{2\pi}$. We discuss how this fact controls the regularity of minimal discs in Finsler manifolds when applied to the work of Alexander Lytchak and Stefan Wenger.

Journal | Trans. Amer. Math. Soc. |

Volume | 373 |

Pages | 1577-1596 |

Link to preprint version | |

Link to published version |

**Related project(s):****24**Minimal surfaces in metric spaces

The Rarita-Schwinger operator is the twisted Dirac operator restricted to 3/2-spinors. Rarita-Schwinger fields are solutions of this operator which are in addition divergence-free. This is an overdetermined problem and solutions are rare; it is even more unexpected for there to be large dimensional spaces of solutions.

In this paper we prove the existence of a sequence of compact manifolds in any given dimension greater than or equal to 4 for which the dimension of the space of Rarita-Schwinger fields tends to infinity. These manifolds are either simply connected Kähler-Einstein spin with negative Einstein constant, or products of such spaces with flat tori. Moreover, we construct Calabi-Yau manifolds of even complex dimension with more linearly independent Rarita-Schwinger fields than flat tori of the same dimension.

**Related project(s):****5**Index theory on Lorentzian manifolds

In the present article we introduce and study a class of topological reflection spaces that we call Kac-Moody symmetric spaces. These generalize Riemannian symmetric spaces of non-compact type. We observe that in a non-spherical Kac-Moody symmetric space there exist pairs of points that do not lie on a common geodesic; however, any two points can be connected by a chain of geodesic segments. We moreover classify maximal flats in Kac-Moody symmetric spaces and study their intersection patterns, leading to a classification of global and local automorphisms. Unlike Riemannian symmetric spaces, non-spherical non-affine irreducible Kac-Moody symmetric spaces also admit an invariant causal structure. For causal and anti-causal geodesic rays with respect to this structure we find a notion of asymptoticity, which allows us to define a future and past boundary of such Kac-Moody symmetric space. We show that these boundaries carry a natural polyhedral structure and are cellularly isomorphic to the halves of the geometric realization of the twin buildings of the underlying split real Kac-Moody group. We also show that every automorphism of the symmetric space is uniquely determined by the induced cellular automorphism of the future and past boundary. The invariant causal structure on a non-spherical non-affine irreducible Kac-Moody symmetric space gives rise to an invariant pre-order on the underlying space, and thus to a subsemigroup of the Kac-Moody group. We conclude that while in some aspects Kac-Moody symmetric spaces closely resemble Riemannian symmetric spaces, in other aspects they behave similarly to ordered affine hovels, their non-Archimedean cousins.

Journal | Münster J. Math. |

Volume | 13 |

Pages | 1-114 |

Link to preprint version | |

Link to published version |

We investigate rigidity properties of S-arithmetic Kac-Moody groups in characteristic 0.

Journal | J. Lie Theory |

Volume | 30 |

Pages | 9-23 |

Link to preprint version | |

Link to published version |

**Related project(s):****8**Parabolics and invariants

When trying to cast the free fermion in the framework of functorial field theory, its chiral anomaly manifests in the fact that it assigns the determinant of the Dirac operator to a top-dimensional closed spin manifold, which is not a number as expected, but an element of a complex line. In functorial field theory language, this means that the theory is twisted, which gives rise to an anomaly theory. In this paper, we give a detailed construction of this anomaly theory, as a functor that sends manifolds to infinite-dimensional Clifford algebras and bordisms to bimodules.

Journal | Annales Henri Poincare |

Publisher | Springer |

Link to preprint version | |

Link to published version |

**Related project(s):****5**Index theory on Lorentzian manifolds

Let (Mi,gi)i∈N be a sequence of spin manifolds with uniform bounded curvature and diameter that converges to a lower dimensional Riemannian manifold (B,h) in the Gromov-Hausdorff topology. Lott showed that the spectrum converges to the spectrum of a certain first order elliptic differential operator D on B. In this article we give an explicit description of D. We conclude that D is self-adjoint and characterize the special case where D is the Dirac operator on B.

Journal | Annals of Global Analysis and Geometry |

Publisher | Springer |

Volume | 57 |

Pages | 121-151 |

Link to preprint version | |

Link to published version |

**Related project(s):****5**Index theory on Lorentzian manifolds

In this paper, we mainly consider the relative isoperimetric inequalities for minimal submanifolds in R*n*+*m*. We first provide, following Cabré \cite{Cabre2008}, an ABP proof of the relative isoperimetric inequality proved in Choe-Ghomi-Ritoré \cite{CGR07}, by generalizing ideas of restricted normal cones given in \cite{CGR06}. Then we prove a relative isoperimetric inequalities for minimal submanifolds in R*n*+*m*, which is optimal when the codimension *m*≤2. In other words we obtain a relative version of isoperimetric inequalities for minimal submanifolds proved recently by Brendle \cite{Brendle2019}. When the codimension *m*≤2, our result gives an affirmative answer to an open problem proposed by Choe in \cite{Choe2005}, Open Problem 12.6. As another application we prove an optimal logarithmic Sobolev inequality for free boundary submanifolds in the Euclidean space following a trick of Brendle in \cite{Brendle2019b}.

**Related project(s):****22**Willmore functional and Lagrangian surfaces

In this work we describe horofunction compactifications of metric spaces and finite dimensional real vector spaces through asymmetric metrics and asymmetric polyhedral norms by means of nonstandard methods, that is, ultrapowers of the spaces at hand. The compactifications of the vector spaces carry the structure of stratified spaces with the strata indexed by dual faces of the polyhedral unit ball. Explicit neighborhood bases and descriptions of the horofunctions are provided.

**Related project(s):****20**Compactifications and Local-to-Global Structure for Bruhat-Tits Buildings

In this paper we consider a Ricci de Turck flow of spaces with isolated conical singularities, which preserves the conical structure along the flow. We establish that a given initial regularity of Ricci curvature is preserved along the flow. Moreover under additional assumptions, positivity of scalar curvature is preserved under such a flow, mirroring the standard property of Ricci flow on compact manifolds. The analytic difficulty is the a priori low regularity of scalar curvature at the conical tip along the flow, so that the maximum principle does not apply. We view this work as a first step toward studying positivity of the curvature operator along the singular Ricci flow.

**Related project(s):****21**Stability and instability of Einstein manifolds with prescribed asymptotic geometry**23**Spectral geometry, index theory and geometric flows on singular spaces

We show that the metrisability of an oriented projective surface is equivalent to the existence of pseudo-holomorphic curves. A projective structure $\mathfrak{p}$ and a volume form $\sigma$ on an oriented surface $M$ equip the total space of a certain disk bundle $Z \to M$ with a pair $(J_{\mathfrak{p}},\mathfrak{J}_{\mathfrak{p},\sigma})$ of almost complex structures. A conformal structure on $M$ corresponds to a section of $Z\to M$ and $\mathfrak{p}$ is metrisable by the metric $g$ if and only if $[g] : M \to Z$ is a pseudo-holomorphic curve with respect to $J_{\mathfrak{p}}$ and $\mathfrak{J}_{\mathfrak{p},dA_g}$.

**Related project(s):****26**Projective surfaces, Segre structures and the Hitchin component for PSL(n,R)

We associate a flow $\phi$ to a solution of the vortex equations on a closed oriented Riemannian 2-manifold $(M,g)$ of negative Euler characteristic and investigate its properties. We show that $\phi$ always admits a dominated splitting and identify special cases in which $\phi$ is Anosov. In particular, starting from holomorphic differentials of fractional degree, we produce novel examples of Anosov flows on suitable roots of the unit tangent bundle of $(M,g)$.

**Related project(s):****26**Projective surfaces, Segre structures and the Hitchin component for PSL(n,R)