The objectives of this project are separated into 3 strongly interconnected areas, spectral geometry, index theory and geometric flows; their unifying theme is the analysis on singular spaces.

The project will treat spectral geometric questions, index theory and geometric flows using the currently available parabolic microlocal methods on simple edge spaces with constant indical roots. This includes:

- Cheeger-Müller Theorem on spaces with even codimension singularities.
- Bergman kernel asymptotics on edges and quantum Hall effect.
- Spectral geometry on edges with variable indicial roots.
- Extension of spectral geometry to stratified spaces.
- Index theory, eta and Cheeger-Gromov rho invariants.
- Long time existence and stability of the singular Ricci flow.
- The porous media equation on edge spaces.

## Publications

## Team Members

** Oliver Fürst**

Doctoral student

Rheinische Friedrich-Wilhelms-Universität Bonn

ofuerst(at)math.uni-bonn.de

**Prof. Dr. Matthias Lesch**

Project leader

Rheinische Friedrich-Wilhelms-Universität Bonn

lesch(at)math.uni-bonn.de

**Prof. Dr. Boris Vertman**

Project leader

Carl-von-Ossietzky-Universität Oldenburg

boris.vertman(at)uni-oldenburg.de