Anosov representations and Margulis spacetimes

The goal of this project is to establish a precise relationship between Margulis spacetimes and Anosov representations.

Margulis spacetimes are geometric objects obtained from proper actions of discrete groups on real three dimensional spaces. Margulis spacetimes can be alternatively be described as deformations of hyperbolic structures. One very important information of its geometry lies on the boundary.

Anosov representations are a systematic way to study representations of a discrete group via its behaviour on the boundary. So one can hope that Margulis spacetimes will lend itself being studied via Anosov representations.

The main objectives of this project can be broadly divided into four parts:

  • Construct coordinates on the space \(G/P\) using generalised cross ratios where \(P\) is a pseudo-parabolic subgroup of \(G=SO^0(n,n+1)\ltimes{\mathbb R}^{2n+1}\).
  • Calculate the curvature and describe the geodesics of the pressure metric.
  • Introduce the notion of an Anosov representation for general non-semisimple Lie groups of the form \(G\ltimes V\) and relate it with proper actions on \(V\) where \(G\) is a semisimple Lie group acting irreducibly on some vector space \(V\).
  • Investigate the boundaries of the moduli space of Anosov representations via degenerations of Anosov structures.


    Team Members

    Dr. Sourav Ghosh
    Project leader
    Ruprecht-Karls-Universität Heidelberg