Members & Guests

Dr. Claudio Meneses Torres


Christian-Albrechts-Universität zu Kiel

E-mail: meneses(at)


32Asymptotic geometry of the Higgs bundle moduli space

Publications within SPP2026

 We consider the long-time behaviour of the mean curvature flow of spacelike hypersurfaces in the Lorentzian product manifold M×R, where M is asymptotically flat. If the initial hypersurface F⊂M×R is uniformly spacelike and asymptotic to M×{s} for some s∈R at infinity, we show that the mean curvature flow starting at F0 exists for all times and converges uniformly to M×{s} as t→∞.


Journalrecently accepted for publication at Journal of Geometric Analysis
Link to preprint version

Related project(s):
23Spectral geometry, index theory and geometric flows on singular spaces

  • 1

This website uses cookies

By using this page, browser cookies are set. Read more ›