## Prof. Dr. Guofang Wang

### Project leader

Albert-Ludwigs-Universität Freiburg im Breisgau

E-mail: guofang.wang(at)math.uni-freiburg.de

Telephone: +49 761 203-5584

Homepage: http://home.mathematik.uni-freiburg.de/w...

## Publications within SPP2026

Abstract: For an immersed Lagrangian submanifold, let \check{A} be the Lagrangian trace-free second fundamental form. In this note we consider the equation \nabla^*T=0 on Lagrangian surfaces immersed in \mathbb{C}^2, where T=-2\nabla^*(\check{A}\lrcornerω), and we prove a gap theorem for the Whitney sphere as a solution to this equation.

**Related project(s):****22**Willmore functional and Lagrangian surfaces

In this paper we introduce a Guan-Li type volume preserving mean curvature flow for free boundary hypersurfaces in a ball. We give a concept of star-shaped free boundary hypersurfaces in a ball and show that the Guan-Li type mean curvature flow has long time existence and converges to a free boundary spherical cap, provided the initial data is star-shaped.

**Related project(s):****22**Willmore functional and Lagrangian surfaces

In this paper we prove that any immersed stable capillary hypersurfaces in a ball in space forms are totally umbilical. This solves completely a long-standing open problem. In the proof one of crucial ingredients is a new Minkowski type formula. We also prove a Heintze-Karcher-Ros type inequality for hypersurfaces in a ball, which, together with the new Minkowski formula, yields a new proof of Alexandrov's Theorem for embedded CMC hypersurfaces in a ball with free boundary.

Journal | Math. Ann. |

Volume | 374 |

Pages | 1845--1882 |

Link to preprint version | |

Link to published version |

**Related project(s):****22**Willmore functional and Lagrangian surfaces

In this note, we first introduce a boundary problem for Lagrangian submanifolds, analogous to the free boundary hypersurfaces and capillary hypersurfaces. Then we present some interesting minimal Lagrangian submanifolds examples satisfying this boundary condition and we prove a Lagrangian version of Nitsche (or Hopf) type theorem. Some problems are proposed at the end of this note.

**Related project(s):****22**Willmore functional and Lagrangian surfaces

In this paper we prove that any smooth surfaces can be locally isometrically embedded into as Lagrangian surfaces. As a byproduct we obtain that any smooth surfaces are Hessian surfaces.

Journal | Annales de l'Institut Henri Poincare (C) Non Linear Analysis |

Link to preprint version | |

Link to published version |

**Related project(s):****22**Willmore functional and Lagrangian surfaces