Members & Guests

JProf. Dr. Klaus Kröncke

Project leader


Universität Hamburg

E-mail: klaus.kroencke(at)uni-hamburg.de
Telephone: +49 40 42838-5183
Homepage: https://www.math.uni-hamburg.de/home/kro...

Publications within SPP2026

In this paper we establish stability of the Ricci de Turck flow near Ricci-flat metrics with isolated conical singularities. More precisely, we construct a Ricci de Turck flow which starts sufficiently close to a Ricci-flat metric with isolated conical singularities and converges to a singular Ricci-flat metric under an assumption of integrability, linear and tangential stability. We provide a characterization of conical singularities satisfying tangential stability and discuss examples where the integrability condition is satisfied.

 

JournalCalc. Var. Part. Differ. Eq.
PublisherSpringer
Volume58
Pages75
Link to preprint version
Link to published version

Related project(s):
21Stability and instability of Einstein manifolds with prescribed asymptotic geometry23Spectral geometry, index theory and geometric flows on singular spaces

In this paper we discuss Perelman's Lambda-functional, Perelman's Ricci shrinker entropy as well as the Ricci expander entropy on a class of manifolds with isolated conical singularities. On such manifolds, a singular Ricci de Turck flow preserving the isolated conical singularities exists by our previous work. We prove that the entropies are monotone along the singular Ricci de Turck flow. We employ these entropies to show that in the singular setting, Ricci solitons are gradient and that steady or expanding Ricci solitons are Einstein.

 

Related project(s):
21Stability and instability of Einstein manifolds with prescribed asymptotic geometry30Nonlinear evolution equations on singular manifolds

We prove that if an ALE Ricci-flat manifold (M,g) is linearly stable and integrable, it is dynamically stable under Ricci flow, i.e. any Ricci flow starting close to g exists for all time and converges modulo diffeomorphism to an ALE Ricci-flat metric close to g. By adapting Tian's approach in the closed case, we show that integrability holds for ALE Calabi-Yau manifolds which implies that they are dynamically stable.

 

Related project(s):
21Stability and instability of Einstein manifolds with prescribed asymptotic geometry

  • 1

This website uses cookies

By using this page, browser cookies are set. Read more